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This paper focuses on the problem of defect prediction, a problem of major importance
during software maintenance and evolution. It is essential for software developers to iden-
tify defective software modules in order to continuously improve the quality of a software
system. As the conditions for a software module to have defects are hard to identify,
machine learning based classification models are still developed to approach the problem
of defect prediction. We propose a novel classification model based on relational associa-
tion rules mining. Relational association rules are an extension of ordinal association rules,
which are a particular type of association rules that describe numerical orderings between
attributes that commonly occur over a dataset. Our classifier is based on the discovery of
relational association rules for predicting whether a software module is or it is not defec-
tive. An experimental evaluation of the proposed model on the open source NASA datasets,
as well as a comparison to similar existing approaches is provided. The obtained results
show that our classifier overperforms, for most of the considered evaluation measures,
the existing machine learning based techniques for defect prediction. This confirms the
potential of our proposal.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Software quality [43] is considered of great importance in the software engineering field. Nevertheless, building software
of high quality is very expensive. Thus, in order to increase the efficiency and usefulness of quality assurance and testing,
software defect prediction is used to identify defect-prone modules in a forthcoming version of a software system and help
allocate the effort on those modules [8].

Association rule mining [38] means searching attribute–value conditions that occur frequently together in a dataset
[19,52]. Ordinal association rules [33] are a particular type of association rules. Given a set of records described by a set
of attributes, the ordinal association rules specify ordinal relationships between record attributes that hold for a certain per-
centage of the records. However, in real world datasets, attributes with different domains and relationships between them,
other than ordinal, do actually exist. In such situations, ordinal association rules are not strong enough to describe data reg-
ularities. Consequently, relational association rules were introduced in [48] in order to be able to capture various kinds of rela-
tionships between record attributes.

This paper proposes a novel classification model for the problem of defect prediction, based on the idea of discovering
relational association rules within a dataset. Predicting whether a software module is defective or not is of major importance
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for the maintenance and evolution of software systems, as developers are continuously interested in improving the software
quality. The results obtained by evaluating the classification model proposed in this paper do confirm that applying rela-
tional association rule mining for defect detection is promising and indicate the potential of our proposal. Moreover, the
use of relational association rules in classifying software entities as being defective or not, is a novel approach.

The rest of the paper is organized as follows. The motivation for our research is presented in Section 2, followed by the
description of the problem of defect prediction and its relevance, as well as existing machine learning based approaches for
solving this problem in Section 3. Section 4 presents the concept of relational association rules. Section 5 introduces our
model for defect prediction based on relational association rule mining. An experimental evaluation of our approach is re-
ported in Section 6, and an analysis of the proposed model and comparison with similar existing approaches are given in
Section 7. Conclusions and further work are outlined in Section 8.
2. Motivation

Identifying the software entities (such as classes, modules, methods, and functions) that are defective is of major impor-
tance as it facilitates further software evolution and maintenance. Although many models have previously been proposed in
the software defect prediction literature, this problem has not been completely solved and researchers are still focusing on
developing more accurate defect predictors. Recent results show that researchers should concentrate on improving the qual-
ity of the data in order to overcome the limits of the existing software prediction models [8].

Relational association rules [48] were introduced as an extension to association rules, in order to be able to discover var-
ious kinds of relations or correlations that exist between data in large datasets. A software module from a software system
can be characterized by a set of relevant software metrics values. These software metrics may be relevant for deciding if a
module is defective or not. Consequently, a software module can be visualized as a high dimensional vector and the entire
software system can be represented as a dataset consisting of the high dimensional vectors corresponding to the system’s
software modules. Within this dataset, where the records are the (high dimensional) software modules and the features
are the software metrics, significant information can be extracted from the software metrics values characterizing the mod-
ules. Different types of relationships between the numerical feature values can be defined and a relational association mining
process can be performed on the dataset representing the software system. Such a mining process can provide interesting
patterns that would be useful for predicting if a software module is or it is not defective.

In our proposal, we have started from the intuition that when deciding if a software entity is defective, relational asso-
ciation rules may be effective, as relationships between the software metrics values characterizing the software entities may
be relevant. These relationships may express quantitative information that may exist in the vector characterizing a software
entity. It is likely that these relationships could provide significant information regarding defective entities.

Although many methods for software defect prediction do exist within the software engineering literature, recent re-
searches are still carried out for proposing more accurate software defect predictors and for overcoming the drawbacks
and limitations of the existing models. Relational association rule mining has not been applied so far for predicting if a soft-
ware entity is defective or not. We therefore aim in this paper at developing a novel method based on relation association
rules, whose effectiveness will be shown through the experimental results.
3. Defect prediction

In this section we aim at presenting the problem of defect prediction and its relevance, as well as existing machine learning
based approaches for solving the considered problem.
3.1. Problem statement and relevance

The automated estimation of software, in terms of defect prediction, is of major importance to the software engineering
community and researchers are continuously focusing on building accurate and trustworthy predictors using legacy data.

In order to deliver high quality software on time, software project managers, quality managers and software developers
need to continuously monitor, detect and correct software defects at all stages of the development process. Defects such as
faults or bugs represent a major factor in planning the on-time-delivery and the quality of the released product especially
during the maintenance and evolution of a software project.

The product quality is highly correlated with the (absence of) defects. It is therefore of high importance for developers and
project managers to assure a software development with as few errors as possible. In this direction, software defect prediction
helps in detecting, tracking and resolving software anomalies that might have an effect on human safety and lives, partic-
ularly in safety critical systems. Defect prediction also allows changes to be made earlier in the software life-cycle, assuring
this way a lower software cost and improving customer satisfaction [25].

A software defect represents any error or deficiency in a software artifact or a software process and a major focus is on
predicting those defects that influence project or product performance. Many software defect predictors use software metrics
[12] to measure the software quality in order to predict software defects. Thus, software defect prediction is the task of
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classifying software modules into the fault-prone and the non-fault-prone ones by using metric-based classification [5].
Most defect prediction techniques used in planning are based on historical data, hence rely on supervised classification.
3.2. Related work

Although association rules [3] are usually used in an unsupervised learning scenario, different extensions for classification
are presented in the literature. One of them is the CBA method, presented in [29], where class association rules, i.e. associ-
ation rules whose consequent is a class label, are mined. [30] presents an extension of this method, called CBA2, where rules
predicting different classes can have a different minimum support, to solve the data imbalance problem.

Ma et al. use in [2] the CBA2 method for predicting defective software modules. Experiments on the NASA datasets [36]
are performed and comparisons with other rule based classification methods are provided. The authors also investigate
whether the association rule sets that were generated based on the data from one software project can be used to predict
defective software modules in other, similar software projects [2].

Kamei et al. present in [24] a hybrid model, which combines association rule mining and logistic regression. When a new
instance needs to be classified, if there are rules that fit the given instance, they will be used for classification, otherwise the
result is provided by a logistic regression model.

Rodriguez et al. introduce in [45] a Subgroup Discovery (SD) algorithm named EDER-SD (Evolutionary Decision Rules for
Subgroup Discovery) that is based on evolutionary computation and generates rules describing only fault-prone modules.
The experiments performed on datasets from NASA showed that the EDER-SD algorithm performs well in most cases when
compared to three other well known SD algorithms.

Besides rule-based methods, many different machine learning algorithms have been applied to the problem of defect pre-
diction. One such work is that of Menzies et al., [35], in which they evaluate the Naive Bayes classifier, OneR and J48. They
have also experimented with different filters and concluded that, on average, logarithmic filtering and Naive Bayes produced
the best results on the 8 used NASA datasets. [44] presents a literature study about a couple of methods that are often used
for defect prediction: simple equations, machine learning methods and defect density prediction models. Similarly, Kaur
et al. in [26] shortly present clustering, classification and association mining as software defect prediction methods.

Challagulla et al. evaluate in [7] some different predictor models on four different real-time software defect data sets that
were taken from the NASA repository [36]. The experimental results have shown that a combination of 1-rule classification
[21] and Instance-based Learning using Consistency based Subset Evaluation technique provides a relatively better consis-
tency in accuracy prediction compared to other models [7].

Haghighi et al. provide in [16] a comparative analysis of 37 different classifiers in fault detection systems and use the
NASA datasets for performing experiments. The results showed that, on average, the Bagging classifier achieved a higher per-
formance and accuracy compared to the others.

A disagreement-based semi-supervised learning method, called ROCUS, is presented by Jiang et al. in [23]. They use semi-
supervised learning because in defect prediction there is a limited amount of labeled data, whereas gathering unlabeled data
is easy. They also use under-sampling to solve the class imbalance problem. ROCUS is evaluated on 8 datasets from the NASA
repository, and the results are compared to other methods which are either semi-supervised methods that do not take into
consideration the imbalanced data, or class-imbalance learning methods that cannot exploit unlabeled data.

Another disagreement-based semi-supervised learning model is presented by Li et al. in [28]. This method, called ACo-
Forest, requires only a percentage of the modules to be labeled, and tries to label the rest of them based on a model built
from the labeled data. The novelty of the method is that it uses active-learning, so it can suggest which data to be labeled
(the ones on which the learners mostly disagree). Tests performed on publicly available datasets showed that this method
outperforms conventional machine learning algorithms.

Guo et al. present in [15] a method that uses Random Forests for predicting if a module contains faults or not. They per-
form tests on five NASA datasets and compare their method to different statistical and machine learning algorithms. They
conclude that Random Forests have higher overall prediction accuracy and/or higher defect detection rate than most of
the other algorithms, and also that they work especially well on large datasets.

In the last years the focus on software defect prediction seems to have shifted towards formalizing and standardizing de-
fect prediction methods. For example, in [49] Song et al. define a framework for software defect prediction based on learning
schemes (made of a data pre-processing method, an attribute selection method and the actual learning algorithm). The
framework consists of two parts: scheme evaluation, where the learning scheme is evaluated and a model is learnt, and sec-
ondly, defect prediction, when the learnt model is used. In [10] a benchmark for defect prediction in the form of publicly
available datasets is presented. They introduce this benchmark to facilitate the comparison of different approaches. Menzies
and Shepperd in [37] investigate the conclusion instability of the prediction systems (i.e. the fact that something true for a
project is not true for a different one) by presenting possible reasons and solutions for these problems.

Metrics that evaluate the results of the methods have also been analysed for the same reason of comparing different ap-
proaches, to show which ones are more suitable for describing the results (although there is still no clear consensus about
them). Ref. [22] presents a list of different performance measures, numerical, graphical and statistical, claiming that the best
one can be project specific. However, almost all papers agree that accuracy alone is not very suitable when data is so skewed.
Ref. [2] claims that AUC is a more suitable metric to be reported, and Gray et al. in [13] demonstrate that precision should



G. Czibula et al. / Information Sciences 264 (2014) 260–278 263
also be reported, because good values for probability of detection and probability of false alarm can also be achieved for a
method with very low precision.
4. Relational association rules: Background

Classical association rules discard any quantitative information that may exist between record attributes in datasets, but
many times this type of information can give valuable insights into the problem at hand. The record attributes may be in an
ordinal relationship, if the domains of the attributes are similar or comparable. Otherwise, when the attributes do not have
commensurable values, more general relations are needed, ones that are strong enough to capture various interesting rela-
tionships between data. Therefore, the extension of classical association rules towards ordinal and more general, relational
association rules allows the uncovering of much stronger rules that consequently achieve superior data mining, or
classification.

In order to be able to capture various kinds of relationships between record attributes, we have extended in [48] the def-
inition of ordinal association rules [33,6] towards relational association rules.

In relational association rule mining, the objective is to find several relationships between the attributes that tend to hold
over a large percentage of records. In a binary classification problem, if attribute A is in relation with attribute B for a great
number of positive instances, then a record in which attribute A is not in relation with attribute B may be a negative instance.
It may not mean very much if only one rule including B is not fulfilled, but it increases the likelihood that the instance in
question belongs to the negative class if many such rules are broken.

The following will briefly review the concept of relational association rules, as well as the mechanism for identifying the
relevant relational association rules that hold within a dataset.

Let R ¼ fr1; r2; . . . ; rng be a set of instances (entities or records in the relational model), where each instance is character-
ized by a list of m attributes, ða1; . . . ; amÞ. We denote by Uðrj; aiÞ the value of attribute ai for the instance rj. Each attribute ai

takes values from a domain Di, which contains the empty value denoted by e. Between two domains Di and Dj relations can
be defined (not necessarily ordinal relations), such as: less or equal (6), equal (=), greater or equal (P), etc. We denote by M
the set of all possible relations that can be defined on DixDj.

A relational association rule [48] is an expression ðai1 ; ai2 ; ai3 ; . . . ; ai‘ Þ ) ðai1 l1 ai2 l2 ai3 � � �l‘�1 ai‘ Þ, where
fai1 ; ai2 ; ai3 ; . . . ; ai‘g#A ¼ fa1; . . . ; amg; aij – aik ; j; k ¼ 1 . . . ‘; j – k and li 2 M is a relation over Dij � Dijþ1

;Dij is the domain
of the attribute aij . If:

(a) ai1 ; ai2 ; ai3 ; . . . ; ai‘ occur together (are non-empty) in s% of the n instances, then we call s the support of the rule, and
(b) we denote by R0 # R the set of instances where ai1 ; ai2 ; ai3 ; . . . ; ai‘ occur together and the relations

Uðrj; ai1 Þ l1 Uðrj; ai2 Þ;Uðrj; ai2 Þ l2 Uðrj; ai3 Þ . . . Uðrj; ai‘�1 Þ l‘�1 Uðrj; ai‘ Þ hold for each instance rj from R0; then we call
c ¼ jR0j=jRj the confidence of the rule.

We call the length of a relational association rule the number of attributes in the rule. The length of a relational association
rule can be at most equal to the number m of the attributes describing the data.

The users usually need to uncover interesting relational association rules that hold in a dataset; they are interested in
relational rules which hold in a minimum number of instances, that is, rules with support at least smin, and confidence at least
cmin (smin and cmin are user-provided thresholds).

We call a relational association rule in R interesting if its support s is greater than or equal to a user-specified minimum
support, smin, and its confidence c is greater than or equal to a user-specified minimum confidence, cmin.

We have previously introduced in [6] an A-Priori [1] like algorithm, called DOAR (Discovery of Ordinal Association Rules),
that efficiently finds all ordinal association rules (i.e. relational association rules in which the relations are ordinal) of any
length, that hold over a dataset.

In the following a brief description of the idea of discovering interesting ordinal association rules will be given [6]. The
mechanism of discovering interesting ordinal association rules in a dataset will be extended in our approach towards iden-
tifying relational association rules.

This algorithm identifies ordinal association rules using an iterative process that consists in length-level generation of
candidate rules, followed by the verification of the candidates for minimum support and confidence compliance. DOAR per-
forms multiple passes over the dataset R. In the first pass, it calculates the support and confidence of the 2-length rules and
determines which of them are interesting, (i.e. verify the minimum support and confidence requirement). Every subsequent
pass over the data consists of two phases. The first phase starts with a seed set of ðk� 1Þ-length (k P 3) interesting rules,
found in the previous pass. This set is used to generate new possible k-length interesting rules, called candidate rules.
The candidate generation process is a key element of the DOAR algorithm. During the second phase, a scan over the R data
is performed in order to compute the actual support and confidence of the candidate rules. At the end of this step, the algo-
rithm keeps the rules that are deemed interesting (have minimum support and satisfy the confidence requirements), which
will be used in the next iteration. The process stops when no new interesting rules were found in the latest iteration.

The DOAR algorithm significantly prunes the exponential search space of all possible interesting ordinal association rules,
due to the candidate generation technique. The candidate generation restricts the search to those regions of the search space
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where it is possible that interesting rules may exist, pruning out all the regions where it is impossible to find any interesting
rules. The search space reduction depends on the data being analyzed. The larger the number of interesting rules in the data-
set is, the larger the size of the candidate sets will be.

We have proven that the proposed algorithm is correct and complete and we have shown that it efficiently explores the
search space of the possible rules. More about the DOAR algorithm and its theoretical validation is given in [6].

The DOAR algorithm is extended in our approach towards the DRAR algorithm (Discovery of Relational Association Rules) for
finding interesting relational association rules, i.e. association rules which are able to capture various kinds of relationships
between record attributes.

Our current implementation provides two functionalities:

� Finds all interesting relational association rules of any length.
� Finds all maximal interesting relational association rules of any length, i.e. if an interesting rule r of a certain length l can

be extended with one attribute and it remains interesting (its confidence is greater than the threshold), only the extended
rule is kept.

4.1. Example

In order to better explain the concept of relational association rules and the extension of the DOAR algorithm [6] that is
used for discovering relational association rules, we give an example of a relational association rule mining task within a
software system.

Let us consider the Java code example shown in Fig. 1. The example is taken from [47] and was used by the authors in
order to illustrate the Move Method refactoring.

As we have described in Section 3.1, the dataset considered in the mining process consists of a set of software entities (in-
stances), each software entity being characterized by a set of software metrics (features characterizing the instances).

We consider in our example that a software entity can be either an application class, or a method from an application
class. The software metrics considered in our experiment are:

1. Depth in Inheritance Tree (DIT) [9].
2. Number of Children (NOC) [9].
3. Fan-In (FI) [20,32].
4. Fan-Out (FO) [20,32].

We have previously used these software metrics in [34] for a clustering based automatic identification of refactorings that
would improve the internal structure of a software system.

Using the above mentioned software metrics, each software entity from the system presented in Fig. 1 can be represented
as a 4-dimensional vector, having as components the values of the considered metrics. The corresponding dataset is given in
Table 1.
Fig. 1. Code example.



Table 1
Sample dataset.

Entity DIT NOC FI FO

Class_A 1 0 3 1
Class_B 1 0 0 2
mA1 1 0 2 1
mA2 1 0 2 0
mA3 1 0 0 2
mB1 1 0 1 1
mB2 1 0 1 0
mB3 1 0 0 2

Table 2
Interesting relational association rules.

Length Rule Confidence

2 DIT > NOC 1
2 NOC < FI 0.625
2 NOC < FO 0.75
2 FI > FO 0.5
3 DIT > NOC < FI 0.625
3 DIT > NOC < FO 0.75
3 NOC < FI > FO 0.5
4 DIT > NOC < FI > FO 0.5

Table 3
Maximal interesting relational association rules.

Length Rule Confidence

3 DIT > NOC < FO 0.75
4 DIT > NOC < FI > FO 0.5
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As all attributes in our experiment have numerical values, we have defined two possible binary relations between the
attributes: < and >.

We executed the DRAR algorithm with minimum support threshold of 0:9 and minimum confidence threshold of 0:4. The
discovered interesting relational rules are shown in Table 2 and the maximal interesting association rules are given in
Table 3. For each discovered rule, its confidence is also provided.

As it can be seen from the results above, interesting relational association rules can be discovered within the set of soft-
ware entities. Further analysis of these relational association rules may provide relevant information regarding the analyzed
software system.
5. Methodology

In this section we introduce a novel supervised method for detecting software entities with defects, based on relational
association rule mining, called DPRAR (Defect Prediction using Relational Association Rules).
5.1. Theoretical model

The main idea of this approach is to represent the entities (classes, modules, methods, functions) of a software system as a
multidimensional vector, whose elements are the values of different software metrics applied to the given entity. In order to
give a formal definition, we consider that a software system S is a set of components (called entities) S ¼ fs1; s2; . . . ; sng.

It is well known that software metrics are widely used to measure the software quality [12]. As we aim at identifying
software entities having defects, we consider a set of software metrics (the feature set in a vector space model based ap-
proach) relevant for deciding if a software entity is or not defective. Consequently, we have a feature set of software metrics
SM ¼ fsm1; sm2; . . . ; smkg and thus each entity si 2 S from the software system can be represented as a k-dimensional vector,
having as components the values of the software metrics from SM; si ¼ ðsi1; si2; . . . ; sikÞ (sij represents the value of the soft-
ware metric smj applied to the software entity si).
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5.2. Our approach

The problem that we are focusing on is a binary classification problem. There are two possible classes, denoted in the fol-
lowing by ‘‘+’’ and ‘‘�’’. By ‘‘+’’ we denote the class corresponding to software entities having defects, and the entities that
belong to the ‘‘+’’ class will be referred to as positive instances or defects. By ‘‘�’’ we denote the class corresponding to soft-
ware entities that are not defective, and the entities that belong to the ‘‘�’’ class will be referred to as negative instances or
non-defects.

The main idea of our approach is the following. In a supervised learning scenario for predicting defective software entities,
two sets containing positive and negative instances are given. Considering the vector space model presented in Section 5.1,
these datasets consist of k-dimensional software entities from a software system. These sets will be used for training the
classifier. During training, the DRAR algorithm will be used. We detect in the training datasets all the interesting relational
rules, with respect to the user-provided support and confidence thresholds. After the training was completed, when a new
instance (software entity) has to be classified (as ‘‘+’’ or ‘‘�’’), we reason as follows. Considering the rules discovered during
training in the set of positive and negative instances, two scores, scoreþ (indicating the similarity degree of the instance to the
positive class) and score� (indicating the similarity degree of the instance to the negative class), are computed. If scoreþ is
greater than score�, then the query instance will be classified as a positive instance, otherwise it will be classified as a negative
instance.

The process takes place in two phases that reflect the principles of a supervised learning algorithm: training and testing.
During training a classification model will be built, and during testing, the model built during training will be applied for
classifying an unseen instance. As mentioned above, we consider for training two datasets: DSþ consisting of positive k-
dimensional instances (software entities that are defective) and DS� consisting of negative k-dimensional instances (software
instances that are not defective). These datasets are used in the training step of the DPRAR classifier and a classification mod-
el consisting of the discovered relational association rules is built. At the classification time, when a new instance (software
entity) e has to be classified, the model learned during the training step will be used for computing the similarity degrees of
the instance e to the positive and negative classes, i.e. to predict if the query instance is or not defective.

For classifying a a software entity as being or not defective, the following steps will be performed:

1. Data pre-processing.
2. Training/building the DPRAR classifier.
3. Testing/classification.

The following will describe these steps.
5.3. Data pre-processing

During this step, the training data are scaled to [0,1] and a statistical analysis is carried out on the training datasets DSþ
and DS� in order to find a subset of features that are correlated with the target output. The statistical analysis on the features
is performed in order to reduce the dimensionality of the input data, by eliminating features which do not significantly influ-
ence the output value.

To determine the dependencies between features and the target output, the Spearman’s rank correlation coefficient [50]
is used. A Spearman correlation of 0 between two variables X and Y indicates that there is no tendency for Y to either increase
or decrease when X increases. A Spearman correlation of 1 or �1 results when the two variables being compared are mono-
tonically related, even if their relationship is not linear. At the statistical analysis step we remove from the feature set those
features that have no significant influence on the target output, i.e. are slightly correlated with it.

In order to decide which feature(s) to remove, we reason as follows. For each feature (software metric) smi 2 SMwe com-
pute the Spearman correlation (corðsmi; targetÞ) between the feature and the target output (defect or non-defect). Let us de-
note by m the average value and stdev the standard deviation of the correlations between all features and the target output.
We consider that a feature smi is slightly correlated with the target classification output and will be removed from the fea-
ture set if the absolute value of the correlation is less than m� stdev , i.e. absðcorðsmi; targetÞÞ < m� stdev .

The dataset pre-processed this way can now be used for building the relational association rule based classification
model.
5.4. Training

First, we define a set of relations between the feature values that will be used in the relational association rule mining
process. More exactly, we are focusing on identifying relations between two software metrics (features), relations that would
be relevant for deciding if a software entity is or not defective, and consequently would be useful in the mining process. After
the relations were defined, the interesting relational association rules are discovered in the training datasets.

More exactly, the training consists of the following steps:
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� Determine from DSþ, using the DRAR algorithm, the set RARþ of relational association rules having a minimum support and
confidence.
� Determine from DS�, using the DRAR algorithm, the set RAR� of relational association rules having a minimum support and

confidence.
� For each rule r from the sets RARþ and RAR� determined as indicated above, the support (denoted by suppðrÞ) and the con-

fidence (denoted by conf ðrÞ) of the rule are computed. We denote in the following by ratioðrÞ the value obtained by divid-
ing the confidence of the rule to its support, i.e. ratioðrÞ ¼ conf ðrÞ

suppðrÞ.

5.5. Classification

At the classification stage, after the training was completed and the DPRAR was built, when a new software entity e has to
be classified, we calculate the scores scoreþðeÞ (the similarity of e to the positive class) and score�ðeÞ (the similarity of e to the
negative class). In computing these scores we started based on the intuition that the similarity of an instance e to the positive
class, for example, is very likely to be influenced by the rules from RARþ that are verified in the entity e but also by the rules
from RAR� that are not verified in the entity e. In this way, scoreþ measures not only how ‘‘close’’ the entity is to the positive
instances, but also how ‘‘far’’ it is from the negative ones.

We propose the following steps for computing the scores:

� Determine nþ as the average values of ratioðrÞ for each rule r from RARþ that is verified in the entity e and n� as the aver-
age values of ratioðrÞ for each rule r from RAR� that is not verified in the entity e.
� Calculate scoreþ as scoreþ ¼ nþ þ n�.
� Determine m� as the average values of ratioðrÞ for each rule r from RAR� that is verified in the entity e and mþ as the aver-

age values of ratioðrÞ for each rule r from RARþ that is not verified in the entity e.
� Calculate score� as score� ¼ m� þmþ.

The above presented score computation method takes into consideration the strength of the verified and unverified rules
(by using the value of ratio, which increases as the confidence of the rule increases), but there are other possibilities for score
computation as well: using only the number of these rules, or computing one single score, which can be transformed into a
class label with the use of a threshold. In the future we will investigate other score computation formulas.

At the classification stage of a new instance e if scoreþ > score� then instance e will be classified as a positive instance
(defect), otherwise it will classified as a negative instance (non-defect).

5.6. Testing

For evaluating the performance of our classifier, a cross-validation using a ‘‘leave-one-out’’ methodology will be applied.
As for a binary classification task, the confusion matrix for the two possible outcomes (positive and negative) is computed.
The confusion matrix [51] consists of: the number of true positives (TP – the number of actual positive instances predicted as
positive), the number of false positives (FP – the number of actual negative instances predicted as positive), the number of
true negatives (TN – the number of actual negative instances predicted as negative) and the number of false negatives (FN
– the number of actual positive instances predicted as negative).

The literature gives us different evaluation measures whose values are computed based on the values from the confusion
matrix. Not all papers from the work related to defect prediction report the same evaluation measures. That is why, in order
to better compare our method to the existing ones, we are going to use in this paper a union of the measures that were used
in the literature to evaluate software defect predictors.

When considering the values computed from the confusion matrix, the following evaluation measures for defect detec-
tors will be used in this paper:

1. The classification accuracy (denoted by Acc) measures the percentage of instances that are classified correctly (or
wrongly) by a classifier, i.e. Acc ¼ TPþTN

TPþTNþFPþFN.
2. The probability of detection (denoted by Pd), or the recall/sensitivity of the classifier computes the proportion of actual pos-

itives which are predicted positive, i.e. Pd ¼ TP
TPþFN.

3. The specificity of the classifier (denoted by Spec) computes the proportion of actual negatives which are predicted nega-
tive, i.e. Spec ¼ TN

TNþFP.
4. The classification precision (denoted by Prec) computes the proportion of predicted positives which are actual positive, i.e.

Prec ¼ TP
TPþFP.

5. The Area under the ROC curve measure (AUC) is indicated in the literature [27,11] as one of the best evaluation measure to
compare different classifiers and it is recommended as the primary accuracy indicator for comparative studies in software
defect prediction [16]. The ROC (Receiver Operating Characteristics) curve is a two-dimensional plot of sensitivity vs. (1-
specificity). ROC curves are usually constructed for classifiers which, instead of directly returning the class of an instance,
return a score that is transformed into a label using a threshold. In such cases, different (sensitivity, 1-specificity) pairs are
obtained for each threshold, which are represented on the ROC curve. In case of classifiers returning the class directly, the
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ROC space has a single point. As presented in [31,11] this point can be linked to the points at (0,0) and (1,1), thus pro-
ducing a curve, for which the AUC measure can be computed. The ROC curves constructed for our method are presented
on Fig. 3;

Ideally, detectors have high Pd; specificity and AUC. These measures have to be maximized in order to obtain better
detectors.

In the experimental part of the paper (Section 6), these evaluation measures will be used for comparing the results pro-
vided by the DPRAR classifier to the results of the classifiers already existing in the software engineering literature for defect
prediction.
6. Experimental evaluation

This section aims at experimentally evaluating our approach for defect detection using relational association rules, as well
as providing a comparison with other existing similar approaches. The case studies used in our experiment, the methodology
used, as well as the obtained results are presented in the following. The datasets used in our experiments are open source
and available at [41], a software engineering repository made publicly available in order to encourage repeatable, verifiable,
and improvable predictive models of software engineering. These 13 public fault data repositories, out of which we will use
10, often called NASA datasets, were originally published at NASA’s Independent Verification and Validation (IV&V) Facility
website [40], but are no longer available there. They were taken over by the PROMISE (PRedictOr Models In Software Engi-
neering) repository [36], which has recently moved to a new address, and the old one is no longer available. Since they were
freely available for anyone who wanted to build or test defect prediction models, they became very popular. A recent study
found that out of 208 defect prediction studies 58 used at least one NASA dataset [17]. In 2011 Gray et al. in [14] describe
that these datasets need serious data cleaning before analysis, because they contain duplicated and inconsistent instances,
especially the Promise version of the datasets. Based on that paper, Shepperd et al. in [46] first present that the datasets on
the original IV&V website and the ones at the Promise site differ both in number of instances and number of attributes. Then,
they identify possible problems with attributes (for example, constant value for all instances, missing values, violating dif-
ferent constrains, etc.) and instances (for example, repeated instances, inconsistent instances, cases with implausible values,
etc.), and present an algorithm that cleans the data. Both the implementation and the cleaned datasets are available online at
the NASA – Software Defect Datasets webpage [41]. There are actually two cleaned versions for each datasets: DS0 – where
duplicated and inconsistent instances are kept, and DS00 – where duplicated and inconsistent instances are eliminated as well.
These cleaned datasets are currently available in the Promise repository [36] as well. In all our analyses we have used the DS00

version of the datasets, taken from [41].
In our evaluation we are focusing on detecting software modules that are likely to be defective, thus an entity (Section 5.1)

is considered to be a module, which can be a function, procedure or method, depending on the programming language used
to write the system. We mention that the DPRAR classifier is general, and that it can also be used for detecting possible defec-
tive application classes, subprograms, etc., if an appropriate representation of these entities is provided.

The methodology presented in Section 5 is applied for each case study. The first stage, the data pre-processing step that
depends on the considered dataset will be detailed for each case study. The other steps of DPRAR, namely building the DPRAR
classifier and the testing step are applied as described in SubSection 5.2. The datasets pre-processed as indicated above, are
used for building the DPRAR classifier (Section 5). For all the experiments, we have considered two possible relations be-
tween the software metrics characterizing a software entity: 6 and > (we have considered that the relations are not defined
between zero valued software metrics) and we executed the classification algorithm introduced in Section 5 with minimum
support threshold smin ¼ 0:9 and different values for the minimum confidence thresholds for the dataset of positive and neg-
ative instances. The minimum confidence threshold considered for the dataset DSþ is denoted by cþmin and the minimum con-
fidence threshold considered for the dataset DS� is denoted by c�min.

When conducting the case studies, we used a software framework that we have designed for binary classification, based
on the discovery of interesting relational association rules. This interface implements the DRAR algorithm (a variation of the
DOAR algorithm previously introduced in [6]) developed for detecting relational association rules in a dataset.

For evaluating the performance of the DPRAR classifier, a cross-validation using a ‘‘leave-one-out’’ methodology was ap-
plied and the performance measures presented in Section 5.2 used.

6.1. The CM1 dataset

The CM1 dataset represents a NASA spacecraft instrument written in the C programming language. It consists of 42 po-
sitive instances (defects) and 285 negative instances (non-defects), meaning that there are 12.84% positive instances and
87.16% negative instances. Each instance has 37 features and the class label.

6.1.1. DPRAR results
Fig. 2 shows the absolute values of the correlations between the features (software metrics) and the target output (defect

or correct) for the CM1 dataset.



Fig. 2. Correlations for the CM1 dataset.

Table 4
Obtained results for all datasets.

Case study cþmin c�min Length Acc Pd Spec Prec AUC

CM1 0.927 0.94 Any 0.8716 0.929 0.8632 0.5 0.896
KC1 0.8 0.822 2 0.823 0.818 0.825 0.628 0.822
KC3 0.885 0.96 2 0.83 0.889 0.8165 0.5246 0.85225
PC1 0.95 0.995 2 0.956 0.885 0.963 0.692 0.924
JM1 0.95 0.995 Any 0.96 0.842 0.992 0.967 0.917
MC2 0.96 0.99 Any 0.896 0.773 0.9632 0.919 0.868
MW1 0.97 0.975 Any 0.941 0.889 0.947 0.667 0.918
PC2 0.95 0.995 Any 0.984 0.938 0.985 0.577 0.962
PC3 0.95 0.995 2 0.967 0.85 0.983 0.877 0.917
PC4 0.95 0.995 2 0.961 0.814 0.985 0.894 0.899
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Fig. 3. ROC curves.
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As a result of the analysis indicated in SubSection 5.3, we concluded that the 17th feature (software metric)
parameter count is slightly correlated with the target output and it should therefore be removed from the feature set.

Table 4 presents the best results obtained by the DPRAR classifier for all datasets considered for evaluation (preprocessed
as indicated below). We should mention that the maximal interesting relational association rules of various lengths (i.e. 2-
length rules vs. any length rules) were considered for this case study together with different values for the minimum con-
fidence thresholds. Fig. 3 shows the ROC curves obtained on the NASA datasets used in our experiments.

6.2. The KC1 dataset

The KC1 dataset contains data for a C++ system implementing storage management for receiving and processing ground
data. It consists of 314 positive instances (defects) and 869 negative instances (non-defects), meaning that there are 26.54%
positive instances and 73.46% negative instances. Each instance has 21 features and the class label.

6.2.1. DPRAR results
Fig. 4 shows the absolute values of the correlations between the features (software metrics) and the target output (defect

or correct) for the KC1 dataset.
As a result of the analysis indicated in Section 5.3, we concluded that the third feature (software metric)

loc code and comment is slightly correlated with the target output and it should therefore be removed from the feature set.
Table 4 presents the best result obtained by the DPRAR classifier for the KC1 dataset (preprocessed as indicated below).

We should mention that the maximal interesting relational association rules of various lengths (i.e. 2-length rules vs. any
length rules) were considered for this case study together with different values for the minimum confidence thresholds.

6.3. The KC3 dataset

The KC3 dataset contains data about a system written in Java for processing and delivery of satellite metadata. It consists
of 36 positive instances (defects) and 158 negative instances (non-defects), meaning that there are 18.56% positive instances
and 81.44% negative instances. Each instance has 39 features and the class label.

6.3.1. DPRAR results
As a result of the analysis indicated in Section 5.3, we concluded that there is no slightly correlated feature (software met-

ric) to the target output for the KC3 dataset. Consequently, the feature set remained the same and no features were removed
from it.

Table 4 presents the best result obtained by the DPRAR classifier for the KC3 dataset (preprocessed as indicated below).
We should mention that the maximal interesting relational association rules of various lengths (i.e. 2-length rules vs. any
length rules) were considered for this case study together with different values for the minimum confidence thresholds.
Fig. 4. Correlations for the KC1 dataset.
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6.4. The PC1 dataset

The PC1 dataset is built for functions from a flight software for earth orbiting satellite, written in C. It consists of 61 po-
sitive instances (defects) and 644 negative instances (non-defects), meaning that there are 8.65% positive instances and
91.35% negative instances. Each instance has 37 features and the class label.
6.4.1. DPRAR results
As a result of the analysis indicated in Section 5.3, we concluded that there is no slightly correlated feature (software met-

ric) to the target output for the PC1 dataset. Consequently, the feature set remained the same and no features were removed
from it.

Table 4 presents the best result obtained by the DPRAR classifier for the PC1 dataset (preprocessed as indicated below).
We should mention that the maximal interesting relational association rules of various lengths (i.e. 2-length rules vs. any
length rules) were considered for this case study together with different values for the minimum confidence thresholds.
6.5. The JM1 dataset

The JM1 dataset contains data about a real-time predictive ground system, which uses simulations to generate predic-
tions, written in C. It consists of 1672 positive instances (defects) and 6110 negative instances (non-defects), meaning that
there are 21.49% positive instances and 78.51% negative instances. Each instance has 21 features and the class label.
6.5.1. DPRAR results
As a result of the analysis indicated in Section 5.3, we concluded that there is no feature (software metric) slightly cor-

related with the target output for the JM1 dataset. Consequently, the feature set remained the same and no features were
removed from it.

Table 4 presents the best result obtained by the DPRAR classifier for the JM1 dataset (preprocessed as indicated below).
We should mention that the maximal interesting relational association rules of various lengths (i.e. 2-length rules vs. any
length rules) were considered for this case study together with different values for the minimum confidence thresholds.
6.6. The MC2 dataset

The MC2 dataset contains data about a video guidance system, written in C/C++. It consists of 44 positive instances (de-
fects) and 81 negative instances (non-defects), meaning that there are 35.2% positive instances and 64.8% negative instances.
Each instance has 39 features and the class label.
Fig. 5. Correlations for the MC2 dataset.
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6.6.1. DPRAR results
Fig. 5 shows the absolute values of the correlations between the features (software metrics) and the target output (defect

or correct) for the MC2 dataset.
As a result of the analysis indicated in Section 5.3, we concluded that features (software metrics) 4

(loc code and comment), 8 (cyclomatic density) and 32 (normalized cyclomatic complexity) are slightly correlated with the tar-
get output and they should therefore be removed from the feature set.

Table 4 presents the best result obtained by the DPRAR classifier for the MC2 dataset (preprocessed as indicated below).
We should mention that the maximal interesting relational association rules of various lengths (i.e. 2-length rules vs. any
length rules) were considered for this case study together with different values for the minimum confidence thresholds.

6.7. The MW1 dataset

The MW1 dataset contains data about a zero gravity experiment related to combustion, written in C. It consists of 27 po-
sitive instances (defects) and 226 negative instances (non-defects), meaning that there are 10.67% positive instances and
89.33% negative instances. Each instance has 37 features and the class label.

6.7.1. DPRAR results
Fig. 6 shows the absolute values of the correlations between the features (software metrics) and the target output (defect

or correct) for the MW1 dataset.
As a result of the analysis indicated in SubSection 5.3, we concluded that features (software metrics) 4

(loc code and comment), 12 (design density) and 17 (parameter count) are slightly correlated with the target output and they
should therefore be removed from the feature set.

Table 4 presents the best result obtained by the DPRAR classifier for the MW1 dataset (preprocessed as indicated below).
We should mention that the maximal interesting relational association rules of various lengths (i.e. 2-length rules vs. any
length rules) were considered for this case study together with different values for the minimum confidence thresholds.

6.8. The PC2 dataset

The PC2 dataset contains data for a dynamic simulator for attitude control systems, written in C. It consists of 16 positive
instances (defects) and 729 negative instances (non-defects), meaning that there are 2% positive instances and 98% negative
instances. Each instance has 36 features and the class label.

6.8.1. DPRAR results
As a result of the analysis indicated in Section 5.3, we concluded that there is no feature (software metric) slightly cor-

related with the target output for the PC2 dataset. Consequently, the feature set remained the same and no features were
removed from it.
Fig. 6. Correlations for the MW1 dataset.
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Table 4 presents the best result obtained by the DPRAR classifier for the PC2 dataset (preprocessed as indicated below).
We should mention that the maximal interesting relational association rules of various lengths (i.e. 2-length rules vs. any
length rules) were considered for this case study together with different values for the minimum confidence thresholds.
6.9. The PC3 dataset

The PC3 dataset contains data about a flight software for earth orbiting satellite, written in C. It consists of 134 positive
instances (defects) and 943 negative instances (non-defects), meaning that there are 12.4% positive instances and 87.6% neg-
ative instances. Each instance has 37 features and the class label.
6.9.1. DPRAR results
Fig. 7 shows the absolute values of the correlations between the features (software metrics) and the target output (defect

or correct) for the PC3 dataset.
As a result of the analysis indicated in Section 5.3, we concluded that feature (software metric) 15 (essential density) is

slightly correlated with the target output and it should therefore be removed from the feature set.
Table 4 presents the best result obtained by the DPRAR classifier for the PC3 dataset (preprocessed as indicated below).

We should mention that the maximal interesting relational association rules of various lengths (i.e. 2-length rules vs. any
length rules) were considered for this case study together with different values for the minimum confidence thresholds.
6.10. The PC4 dataset

The PC4 dataset, like PC3, contains data about a flight software for earth orbiting satellite, written in C. It consists of 177
positive instances (defects) and 1110 negative instances (non-defects), meaning that there are 13.8% positive instances and
86.2% negative instances. Each instance has 37 features and the class label.
6.10.1. DPRAR results
As a result of the analysis indicated in Section 5.3, we concluded that there is no feature (software metric) slightly cor-

related with the target output for the PC4 dataset. Consequently, the feature set remained the same and no features were
removed from it.

Table 4 presents the best result obtained by the DPRAR classifier for the PC4 dataset (preprocessed as indicated below).
We should mention that the maximal interesting relational association rules of various lengths (i.e. 2-length rules vs. any
length rules) were considered for this case study together with different values for the minimum confidence thresholds.
Fig. 7. Correlations for the PC3 dataset.
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7. Discussion

In this section we aim at analyzing the method proposed in this paper by emphasizing its advantages and drawbacks, as
well as comparing the DPRAR classifier to other similar approaches existing in the software engineering defect detection
literature.

The following provides a comparison between the DPRAR method introduced in this paper and the CBA2 method [2], the
1R classifier [7], the Bagging classifier [16] and the EDER-SD [45]. The main reason for selecting the CBA2;1R;Bagging and the
EDER-SD methods for comparison is that they were applied on datasets from the NASA repository [36], thus a comparison of
the obtained results is possible is most cases. Another reason is that CBA2 is a classification method based on association rule
mining (as DPRAR is), EDER-SD is rule based (as DPRAR is) and 1R and Bagging were identified in [7,16] as the classifiers with
the highest accuracy among the classifiers that were experimented on the NASA datasets.

Table 5 shows comparatively, for all the case studies considered for evaluation, the classification accuracy (Acc), the prob-
ability of detection (Pd), the specificity (Spec), the precision (Prec) and the AUC measures obtained for the
DPRAR;CBA2;1R;Bagging and the EDER-SD methods. If an evaluation measure is not available for a particular classifier, this
Table 5
Comparative results.

Data Acc Pd Spec Prec AUC

CM1 CBA2 0.8036 CBA2 0.2 CBA 0.885 CBA2 n/a CBA2 0.598
1R 0.8816 1R n/a 1R n/a 1R n/a 1R n/a
Bagging 0.8995 Bagging n/a Bagging n/a Bagging n/a Bagging 0.720
EDER-SD 0.88 EDER-SD n/a EDER-SD 0.947 EDER-SD 0.357 EDER-SD n/a
DPRAR 0.8716 DPRAR 0.929 DPRAR 0.8632 DPRAR 0.5 DPRAR 0.896

KC1 CBA2 0.8371 CBA2 0.461 CBA2 0.910 CBA2 n/a CBA2 0.836
1R 0.831 1R n/a 1R n/a 1R n/a 1R n/a
Bagging 0.8568 Bagging n/a Bagging n/a Bagging n/a Bagging 0.809
EDER-SD 0.859 EDER-SD n/a EDER-SD 0.980 EDER-SD 0.596 EDER-SD n/a
DPRAR 0.823 DPRAR 0.818 DPRAR 0.825 DPRAR 0.628 DPRAR 0.822

KC3 CBA2 0.9091 CBA2 0.333 CBA2 0.962 CBA2 n/a CBA2 0.696
1R n/a 1R n/a 1R n/a 1R n/a 1R n/a
Bagging n/a Bagging n/a Bagging n/a Bagging n/a Bagging n/a
EDER-SD 0.935 EDER-SD n/a EDER-SD 1 EDER-SD 0.643 EDER-SD n/a
DPRAR 0.83 DPRAR 0.889 DPRAR 0.8165 DPRAR 0.5246 DPRAR 0.85225

PC1 CBA2 0.9178 CBA2 0.44 CBA2 1 CBA2 n/a CBA2 0.827
1R 0.9369 1R n/a 1R n/a 1R n/a 1R n/a
Bagging 0.9332 Bagging n/a Bagging n/a Bagging n/a Bagging 0.915
EDER-SD 0.943 EDER-SD n/a EDER-SD 1 EDER-SD 0.577 EDER-SD n/a
DPRAR 0.956 DPRAR 0.885 DPRAR 0.963 DPRAR 0.692 DPRAR 0.924

JM1 CBA2 0.7352 CBA2 0.461 CBA2 n/a CBA2 n/a CBA2 0.688
1R 0.7987 1R n/a 1R n/a 1R n/a 1R n/a
Bagging 0.8104 Bagging n/a Bagging n/a Bagging n/a Bagging 0.742
EDER-SD n/a EDER-SD n/a EDER-SD n/a EDER-SD n/a EDER-SD n/a
DPRAR 0.96 DPRAR 0.842 DPRAR 0.992 DPRAR 0.967 DPRAR 0.917

MC2 CBA2 0.6981 CBA2 0.333 CBA2 0.886 CBA2 n/a CBA2 0.671
1R n/a 1R n/a 1R n/a 1R n/a 1R n/a
Bagging n/a Bagging n/a Bagging n/a Bagging n/a Bagging n/a
EDER-SD 0.759 EDER-SD n/a EDER-SD 1 EDER-SD 0.529 EDER-SD n/a
DPRAR 0.896 DPRAR 0.773 DPRAR 0.9632 DPRAR 0.919 DPRAR 0.868

MW1 CBA2 0.9104 CBA2 0.5 CBA2 0.919 CBA2 n/a CBA2 0.86
1R n/a 1R n/a 1R n/a 1R n/a 1R n/a
Bagging n/a Bagging n/a Bagging n/a Bagging n/a Bagging n/a
EDER-SD 0.941 EDER-SD n/a EDER-SD 1 EDER-SD 0.456 EDER-SD n/a
DPRAR 0.941 DPRAR 0.889 DPRAR 0.947 DPRAR 0.667 DPRAR 0.918

PC2 CBA2 0.992 CBA2 0.455 CBA2 0.994 CBA2 n/a CBA2 0.809
1R n/a 1R n/a 1R n/a 1R n/a 1R n/a
Bagging n/a Bagging n/a Bagging n/a Bagging n/a Bagging n/a
EDER-SD n/a EDER-SD n/a EDER-SD n/a EDER-SD n/a EDER-SD n/a
DPRAR 0.984 DPRAR 0.938 DPRAR 0.985 DPRAR 0.577 DPRAR 0.962

PC3 CBA2 0.8648 CBA2 0.255 CBA2 0.934 CBA2 n/a CBA2 0.821
EDER-SD n/a EDER-SD n/a EDER-SD n/a EDER-SD n/a EDER-SD n/a
DPRAR 0.967 DPRAR 0.85 DPRAR 0.983 DPRAR 0.877 DPRAR 0.917

PC4 CBA2 0.8396 CBA2 0.648 CBA2 0.866 CBA2 n/a CBA2 0.885
EDER-SD n/a EDER-SD n/a EDER-SD n/a EDER-SD n/a EDER-SD n/a
DPRAR 0.961 DPRAR 0.814 DPRAR 0.985 DPRAR 0.894 DPRAR 0.899
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will be marked with ‘‘n/a’’. 1R and Bagging classifiers do not provide results for PC3 and PC4 datasets, therefore are not shown
in Table 5. For each case study, the best result is marked with bold characters.

An accurate comparison between the DPRAR classifier and other defect detectors existing in the literature is not entirely
possible, due to the following reasons:

� Firstly, despite using the NASA-datasets for the case study, other classifiers might have used different versions of these
datasets. As we have mentioned at the beginning of Section 6, we used the cleaned version of these datasets, the one with-
out duplicates. Other defect detector case studies do not report which version they use, but they usually give a short
description of the datasets (number of instances, number of features) which does suggest the used version. Based on these
descriptions, [2,7] uses the original (not cleaned) datasets and they do not mention any data cleaning steps either. [16]
does not present the description of the used datasets, and does not mention data cleaning. [45] uses the uncleaned data-
sets as well, but for each used dataset they mention the number of inconsistent and duplicate cases, without mentioning
whether they were eliminated or not. The problem with the uncleaned version of the datasets is the presence of the dupli-
cates, which offers no guarantee that testing data would not contain instances present in the training data. Although not
all methods are equally affected by duplicate instances, [14] presents an experiment with an artificial dataset,where dif-
ferent quantities of duplicate instances were introduced. When using a random forest decision tree learner, with 25%
duplicate instances, the accuracy grew from 48.50% (value for the test after training on the dataset with no duplicates)
to 65.20%, whereas for a higher percent of duplicates, the accuracy grew even higher (up to 93.50%, for 100% duplicates
– each instance was present twice in the artificial dataset).
� A further reason that may affect the comparison is that different methodologies were used for testing the classifiers. For

DPRAR a leave-one out cross-validation methodology is used. As indicated in [2,7], the results of the CBA2 and the 1R
method on a dataset were obtained by using 70% instances from the dataset for training and the remaining 30% instances
for testing. Similarly, [45] reports that two-thirds of the data was used for training and one-third was used for testing.
[16] does not mention what kind of testing method was used, except that they used the WEKA [18] tool, where different
settings for testing can be chosen.
� Not all evaluation measures we have used for comparison on each considered dataset are available for all classifiers. Accu-

racy is the only measure reported for every method, but since the datasets are imbalanced, accuracy alone is not suffi-
cient. The rest of the metrics are reported only for some methods, for example AUC is reported for CBA2 and Bagging,
and precision is reported for EDER-SD. Similarly, only CBA2 uses all 10 datasets that we have used, whereas EDER-SD uses
only 6 of them, while Bagging and 1R use only 4.

From Table 5 one can observe the following:

� Considering accuracy, our DPRAR classifier beats the other classifiers on six of the datasets (PC1, JM1, MC2, MW1 – tie with
EDER-SD, PC3 and PC4). For the rest of the datasets, the results vary as follows: for CM1, DPRAR is only the fourth out of
the five methods, for KC1, KC3 and PC2 it is the last out of the 5, 3 and 2 methods, respectively. Still, in case of PC2 the
difference is very small, only 0.008.
� Probability of detection is only reported for the CBA2 classifier, and here our DPRAR classifier is a lot better (differences

between 0.166 and 0.729) for every dataset.
� In respect to specificity DPRAR has the best value for only 3 datasets (PC3, PC4 and JM1), and there are 6 datasets where

EDER-SD has the highest specificity, with a value of 1 in four of the cases. For the PC2 dataset CBA2 has the highest value,
but the difference between DPRAR and CBA2 is only 0.009.
� Precision is reported only for EDER-SD and DPRAR, and the highest values are for the DPRAR classifier, except for the KC3

dataset.
� Another frequently reported metric in case of classifiers is the AUC. For this metric, our DPRAR has the highest value for 9

datasets, only in case of KC1 is the AUC of CBA2 the highest.

Considering all metrics and all datasets, we can say that the DPRAR classifier has less good results for the KC1 and KC3
datasets. The reason for this may be that DPRAR; CBA2 and 1R were not tested using the same methodology. As it was already
mentioned, the DPRAR method was tested using the leave-one out cross-validation methodology, but CBA2 and 1R do not use
cross-validation for testing. Another cause may be that the proportion of positive instances is much smaller than the propor-
tion of negative instances for the considered datasets and this may as well be a cause of low detection probabilities and
detection accuracies.
Table 6
Difficulty of the used NASA datasets.

Dataset CM1 JM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4

Difficulty 0.1865 0.308 0.3178 0.3041 0.392 0.2015 0.1475 0.0430 0.195 0.2005
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Fig. 8. DPRAR performance.
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A third possible cause for the results can be related to the difficulty of datasets. Difficulty is a metric introduced by Boetti-
cher in [4], computed for a dataset, whose value depends on how many instances are in the dataset whose nearest neighbor
(excluding the class label, when computing the distances) has the same label as the instance itself (their number is denoted
by Matches). The exact formula is: Overall Difficulty ¼ 1� Matches

Total Data Instances. The difficulties computed for the datasets used in
the experimental evaluation are presented on Table 6.

From Table 6 we can see that the KC1 and the KC3 dataset have a higher difficulty than most of the other datasets, even if
MC2 and JM1 have also high difficulty and the DPRAR classifier has good results for those datasets. Still, difficulty might have
to do something with the performance of the DPRAR classifier, because, with some exceptions, datasets with higher difficulty
have lower AUC values, which is shown by the following: if we sort the datasets decreasingly by their difficulty we have the
following list: MC2, KC1, JM1,KC3, MW1, PC4, PC3, CM1, PC1, PC2; if we sort them increasingly, based on the AUC value of
the DPRAR classifier we will have: KC1, MC2, KC3, CM1, JM1, PC3, MW1, PC1, PC2. Basically, the same datasets can be found
in the first part of both lists and also in the last part of both lists (exceptions are PC4, JM1 and CM1).

We can conclude that, taking into account all evaluation measures for all considered case studies, DPRAR performed better
in 45 measures, similarly in 1 of them and worse in 23 out of the 69 evaluation measures. Moreover, the AUC measure re-
ported by the DPRAR classifier (considered in the literature one of the best evaluation measures to compare classifiers) out-
performs the average AUC value reported by existing defect detectors on all considered case studies. This indicates a very
good efficiency of the DPRAR classifier. This comparison is illustrated in Fig. 8, where the red bars correspond to the AUC val-
ues of the DPRAR classifier.

The results described above bring us to the conclusions that our DPRAR technique provides a good performance compared
to other existing software defect detector models and that applying relational association rule mining for defect detection is
promising. Further improvements will, certainly, increase the accuracy of the obtained results. Moreover, our DPRAR method
is general and it can therefore be used for detecting possible defective software entities such as application classes and sub-
programs, if an appropriate representation of these entities is provided.

The DPRAR technique may be further extended such that for the identified defective entities to provide useful information
regarding the software metrics that are likely to cause the defect. This way, software developers may obtain indications
regarding the source of the defect. The current implementation of our proposal does not provide this functionality, but fur-
ther work will deal with this issue.
8. Conclusions and further work

We have introduced in this paper a classification model based on relational association rule discovery for detecting in
software systems software entities that are likely to be defective. Experiments were conducted in order to detect defective
software modules, and the obtained results have shown that our classifier is better than, or comparable to, the classifiers
already applied for software defect detection, indicating the potential of our proposal.

Further work in the relational association rules discovery will be made in order to identify and consider different types of
relations between the software metrics, relations that may be relevant in the mining process. We will also investigate how
the length of the rules and the confidence of the relational association rules discovered in the training data may influence the
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accuracy of the classification task. Directions to hybridize our classification model, by combining it with other machine
learning based predictive models [39] will be considered too. We also plan to extend our model considering fuzzy relational
association rules [42] and investigating their usefulness in software defect detection.
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