
Information and Software Technology 54 (2012) 248–256
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Transfer learning for cross-company software defect prediction

Ying Ma a,⇑, Guangchun Luo a, Xue Zeng a,b, Aiguo Chen a

a School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
b Department of Computer Science, University of California, Los Angeles, CA 90095-1596, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 26 November 2010
Received in revised form 16 August 2011
Accepted 12 September 2011
Available online 19 October 2011

Keywords:
Machine learning
Software defect prediction
Transfer learning
Naive Bayes
Different distribution
0950-5849/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.infsof.2011.09.007

⇑ Corresponding author. Tel.: +86 028 61830557; fa
E-mail addresses: may@uestc.edu.cn (Y. Ma), g

snow.zeng@gmail.com (X. Zeng), agchen@uestc.edu.c
Context: Software defect prediction studies usually built models using within-company data, but very
few focused on the prediction models trained with cross-company data. It is difficult to employ these
models which are built on the within-company data in practice, because of the lack of these local data
repositories. Recently, transfer learning has attracted more and more attention for building classifier in
target domain using the data from related source domain. It is very useful in cases when distributions
of training and test instances differ, but is it appropriate for cross-company software defect prediction?
Objective: In this paper, we consider the cross-company defect prediction scenario where source and tar-
get data are drawn from different companies. In order to harness cross company data, we try to exploit
the transfer learning method to build faster and highly effective prediction model.
Method: Unlike the prior works selecting training data which are similar from the test data, we proposed
a novel algorithm called Transfer Naive Bayes (TNB), by using the information of all the proper features in
training data. Our solution estimates the distribution of the test data, and transfers cross-company data
information into the weights of the training data. On these weighted data, the defect prediction model is
built.
Results: This article presents a theoretical analysis for the comparative methods, and shows the experi-
ment results on the data sets from different organizations. It indicates that TNB is more accurate in terms
of AUC (The area under the receiver operating characteristic curve), within less runtime than the state of
the art methods.
Conclusion: It is concluded that when there are too few local training data to train good classifiers, the
useful knowledge from different-distribution training data on feature level may help. We are optimistic
that our transfer learning method can guide optimal resource allocation strategies, which may reduce
software testing cost and increase effectiveness of software testing process.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Predicting the quality of software modules is very critical for
the high-assurance and mission-critical systems. Within-company
defect prediction [1–7] has been well studied in the last three dec-
ades. However, there are rarely local training data available in
practice, either because the past local defective modules are
expensive to label, or the modules developed belong to strange do-
mains for companies. Fortunately, there exist a lot of public data
repositories from different companies. But, to the best of our
knowledge, very few studies focused on the prediction model
trained with these cross-company data.

Cross-company defect prediction is not a traditional machine
learning problem, because the training data and test data are under
ll rights reserved.

x: +86 028 61830580.
cluo@uestc.edu.cn (G. Luo),

n (A. Chen).
different distributions. In order to solve this problem, Turhan et al.
[8] use a Nearest Neighbor Filter (NN-filter) to select the similar
data from source data as training data. They discard dissimilar
data, which may contain useful information for training. After that,
Zimmermann et al. [9] use decision trees to help managers to esti-
mate precision, recall, and accuracy before attempting a prediction
across projects. However their method does not yield good results
from used across different projects. We consider this a critical
transfer learning problem, as defined by Pan and Yang [10].

Unlike these papers, we develop a novel transfer learning algo-
rithm called Transfer Naive Bayes (TNB) for cross-company defect
prediction. Instead of discarding some training samples, we exploit
information of all the cross-company data in training step. By
weighting the instance of training data based on target set infor-
mation, we build a weighted Naive Bayes classifier. Finally, we per-
form analysis on publicly available project data sets from NASA
and Turkish local software data sets [11]. Our experimental results
show that TNB gives better performance on all the data sets when
compared with the state-of-the-art methods.

http://dx.doi.org/10.1016/j.infsof.2011.09.007
mailto:may@uestc.edu.cn
mailto:gcluo@uestc.edu.cn
mailto:snow.zeng@gmail.com
mailto:agchen@uestc.edu.cn
http://dx.doi.org/10.1016/j.infsof.2011.09.007
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


Y. Ma et al. / Information and Software Technology 54 (2012) 248–256 249
The rest of this paper is organized as follows. Section 2 briefly
reviews the background of the transfer learning techniques and
software defect prediction algorithms. Section 3 presents our
transfer algorithm, and analyzes the theoretical runtime cost of
the algorithm. Section 4 describes the software defect data sets,
performance metrics used in this study, and shows the experimen-
tal results with discussions. Section 5 finalizes the paper with con-
clusions and future works.
2. Related work

2.1. Transfer learning techniques

Transfer learning techniques allow the domains, tasks, and dis-
tributions of the training data and test data to be different, and
have been applied successfully in many real-world applications re-
cently. According to [10], transfer learning is defined as follows:
Given a source domain DS and learning task TS, a target domain
DT and learning task TT, transfer learning aims to help improve
the learning of the target predictive function in DT using the knowl-
edge in DS and TS, where DS – DT or TS – TT. Cross-company soft-
ware defect prediction corresponds to inductive transfer learning
setting, in which the source and target tasks are the same, while
the source and target domains are different, i.e. TS = TT and DS – DT.

Inductive transfer learning approaches can be summarized into
two categories, instance-transfer and feature-representation-
transfer [12]. While the feature-representation-transfer learns
low-dimensional representations for reducing the domain diver-
gence, the instance-transfer gives the source instances different
weights according to their contribution for building model in tar-
get domain. These approaches usually have two steps: (1) estimat-
ing the weights of the source domain data; (2) training models on
the re-weighted data.

In this research, we mainly focus on instance-transfer ap-
proaches. Ref. [13] proposed a kernel mean matching re-weighting
process to solve sample selection bias problem. Ref. [14] proposed
a logistic regression classifier for differing training and test distri-
butions. Ref. [15] proposed a Kullback–Leibler importance estima-
tion procedure to improve classification accuracy, when the
number of training samples are typically limited while test input
samples are abundantly available.

Most recently, there are some transfer algorithms extension for
existing classifiers. For example, [16] proposed an extension of
bagging (called TrBagg). [17] proposed a transfer learning method
based on EM algorithm, which can found a locally optimal a poste-
riori hypothesis under the target distribution. [18] proposed a no-
vel framework (called TrAdaBoost) for transferring knowledge
from one distribution to another by boosting a basic learner. Trans-
fer learning method proposed in this research, is also the extension
for Naive Bayes classifiers.

Transfer learning technique also works well on many fields such
as image classification [19], name-entity recognition [20], web
page translation [21], natural language processing [22], and email
spam filtering [23]. Cross-company defect prediction uses the pub-
lic software defect data repositories, which are under different dis-
tributions. As mentioned above, cross-company defect prediction
is also a transfer learning problem. Our experiment results show
that the transfer learning algorithm proposed provides a novel
method to the cross-company defect prediction.
2.2. Software defect prediction

With the software metric research advanced [24–26], there are
a lot of paper using different methods on defect prediction, such as
interpretable models [1], decision tree [2], Bayesian networks [3],
and neural networks [4]. Menzies et al. [5] compare the perfor-
mance of learning methods, and also endorse the use of static code
attributes for defected-prone models prediction. After that, they
report the ‘‘ceiling effect’’ [6], and hold the idea that further pro-
gress in learning defect predictors may not come from better algo-
rithms, but come from more information content of the training
data. But later, Catal and Diri [7] investigate the effects of data
set size, metrics set, and feature selection techniques on perfor-
mance of prediction model, and show that prediction algorithm
is more important than the metrics suite. However, these methods
assume sufficient local data for training, which are often difficult to
find in reality.

Most recently, unlike these within-company methods, Turhan
et al. [8] have proposed a NN-filter method to select the similar
samples from source data. Without using all the source data, they
only use nearest neighbors for each test samples to form training
set, which has similar characteristic to the local data. They recom-
mend managers use the NN-filter method in the early phase of
software development, when companies have no local defect data.
But the runtime cost of this filter is impractical, especially for large
data sets, as the neighbors must be searched for each testing sam-
ples. Zimmermann et al. [9] identified the effect of the various
characteristics on prediction quality with decision trees, by analyz-
ing similarity levels of test data set and the training data set. Liu
et al. [27] proposed a search-based approach to predict defects
on multiple repositories. Their method has a lower total cost of
misclassification than those of non-search-based models. However,
since all the data sets come from NASA, it is unclear to what extent
the data can be actually considered cross-company. Without dis-
carding any samples, we developed a transfer learning method
by sample weighting, while ignoring the similarity between
cross-company projects.
3. Transfer learning for software defect prediction

In this section, we present our Transfer Naive Bayes (TNB) algo-
rithm, based on Naive Bayes. Furthermore, we give the theoretical
runtime cost analysis for the algorithm. The main idea of TNB is
giving weights to the training samples, according to the similarities
between the source and target data on feature level. And then,
Naive Bayes classifier is built on these weighted training samples.
3.1. Naive Bayes software defect prediction model

As in the standard machine learning formulation, let L = {(x1,c1),
(x2,c2), . . . , (xn,cn)} be the training set, where n is the number of
instances in the training set, ci is the class of instance xi. In cross-
company defect prediction problem, ci 2 (true, false), defective
modules are labeled as ‘true’, and defect-free modules are labeled
as ‘false’. Furthermore, Let U = {u1,u2, . . . ,um} be the target set,
where m is the number of instances in the target set. Recently a
well-known work [5] reported that using the Naive Bayes classifier
[28] with static code metrics could improve the accuracy of within-
company defect prediction. In Naive Bayes, the target instance u
can be labeled as following formula.

cðuÞ ¼ arg max
c2C

PðcjuÞ ¼ arg max
c2C

PðcÞ
Qk

j¼1PðajjcÞ
Rc2CPðcÞ

Qk
j¼1PðajjcÞ

ð1Þ

where u = {a1,a2, . . . ,ak}, aj is the jth attribute of the target instance
u, k is the number of attributes. P(c), P(ajjc), and P(cju) are the prior,
conditional, and posterior probability for class c.

The Naive Bayes classifiers are known as a simple Bayesian clas-
sification algorithm, assuming that the effect of an attribute value
on a given class is independent of the values of other attributes.



250 Y. Ma et al. / Information and Software Technology 54 (2012) 248–256
Our method also has this assumption. We think all the attributes
have the same importance, i.e. the same weight for classification.

3.2. Transfer Naive Bayes

In order to transfer the information of the test data, firstly, the
information of the test set (target data set) is collected. Next, every
feature of the data in training set is compared with this informa-
tion. And then, the weight of each training data is calculated
through an analogy with gravitation. Finally, the predict model is
built, based on the weighted training data.

3.2.1. Collecting target set information
In our method, an instance can also be written as xi = {ai1,ai2, . . . ,

aik}, aij is the jth attribute of xi. In order to get the information of
target set, we compute the maximum value and minimum value
of jth attribute on the test set, i.e.

maxj ¼maxfa1j; a2j; . . . ; amjg ð2Þ
minj ¼minfa1j; a2j; . . . ; amjg ð3Þ

where j = 1,2, . . . ,k, k is the number of the attributes, and m is the
number of the test data. Then, we have two vectors, Max = {max1,
max2, . . . ,maxk}, Min = {min1,min2, . . . ,mink}. These two vectors con-
tain the information of the test set.

We assume each similar attribute has the same contribution to
classifying the target set. For each training sample, the degree of
similarity to the test set is computed by calculating the location
of attributes between these maximum values and minimum val-
ues. For each instance xi in training set, we compute the number
of similar attributes,

si ¼
Xk

j¼1

hðaijÞ ð4Þ

where hðaijÞ ¼
1 if minj 6 aij 6 maxj

0 else

�
; aij is the jth attribute of

the instance xi.
For example, we have three original training data: x1 = (2, 1, 3,

‘false’); x2 = (1, 2, 2, ‘false’); x3 = (1, 3, 4, ‘true’). The test data
are: u1 = (2, 1, 3); u2 = (1, 2, 3).

We can compute the Max, Min vectors on the test data, Max = (2,
2, 3); Min = (1, 1, 3). Then we can compute si on the training data.
According to Eq. (4), we have s1 = 3, because 1 6 2 6 2; 1 6 1 6 2;
3 6 3 6 3. Similarly we have, s2 = 2; s3 = 1.

3.2.2. Data gravitation
In order to transfer the target set information, we introduce

data gravitation in our method. Data gravitation simulates the uni-
versal gravitation in data analysis. Many studies make data gravi-
tation applicable to machine learning, such as [29–31]. Peng
et al. [29] presented a data gravitation based classification, by sim-
ulating the gravitation. Wang et al. [30] improved the Nearest
Neighbor classifier using a simulated gravitational collapse algo-
rithm to trim the boundaries of the distribution of each class to re-
duce overlapping. Indulska et al. [31] introduced the center of
gravity concept to optimize the end clustering result. To draw an
analogy with gravitation, we calculate the weights (just as the
force F) of the training data to the test data set.

According to Newton’s Universal Gravitation law [32], the uni-
versal gravitation exists between any two objects. The gravitation
is proportional to the product of the two masses and inversely pro-
portional to the square of the distance between them:

F ¼ G
m1m2

r2 ð5Þ

where G is the universal gravitational constant. m1 is the mass of
one of the objects. m2 is the mass of the other object. r is the radius
of separation between the center of masses of each object. F is the
force of attraction between the two objects. In our method, we also
weight the training data, by simulating the form of gravitation
equation, as shown in the next section.

3.2.3. Weighting for training data
We simulate the universal gravitation between objects to a

‘force’ (i.e. W / 1
r2, as shown in Eq. (5)) between our training data

and test set. Suppose one feature has mass M, then the mass of
the test set is kmM and the mass of each training data is siM (the
mass of the features located between the Min and Max). Thus,
the weight wi of the training instance xi is directly proportional
to ksimM2 and inversely proportional to r2

i ¼ ðk� si þ 1Þ2, which
correspond to the product of two masses and the square of the dis-
tance in the gravitation formula, respectively. So, the weight of in-
stance can be defined as follows.

wi ¼
m1m2

r2
i

¼ ksimM2

ðk� si þ 1Þ2
/ si

ðk� si þ 1Þ2
ð6Þ

According to this formula, the data xi are more similar to the test
set, the more weight wi are given. If the similarity si is equal to
the number of attributes k, all the attributes locate between the
maximum values and minimum values, then the dissimilarity
k � si + 1 is equal to 1, the greatest weight is assigned. We can also
normalize them using summation

Pn
j¼1wi.

The prior probability is computed based on the weighted data.
The prior formula is changed to reflect the distribution of the class
of the test data. If a training sample is similar to the test data, more
weight is given to the training data. And more weight is given to
the class of this training data, because this class can be consider
to exist in the test set. According to [33], the weighted prior prob-
ability for class c can be re-written as follows.

PðcÞ ¼
Pn

i¼1widðci; cÞ þ 1Pn
i¼1wi þ nc

ð7Þ

where wi is the weight of the training instance xi, ci is class value of
the training instance xi, n is total number of training instances, nc is
total number of classes, nc = 2 in the prediction model, d(x,y) is the
indicator function. d(x,y) = 1 if x = y, zero otherwise.

For the class c, the more samples with the same class in the
training data, the larger prior probability is given. Give a test in-
stance x, by using sample weighting method described in [33],
the conditional probability for jth attribute aj is

PðajjcÞ ¼
Pn

i¼1widðaij; ajÞdðci; cÞ þ 1Pn
i¼1widðci; cÞ þ nj

ð8Þ

where aij is the value of jth attribute in ith training instance, and nj

is the number of different jth attribute values. In this formula, the
conditional probability P(ajjc) is computed, when the training data
has the same attribute value aj and class c with x.

Since the features of the software defect data are numeric, all
the numeric features are discretized using Fayyad and Irani’s
MDL-based discretization scheme [34]. And then the results are
treated as nominal attributes. By combining Eqs. (1), (7), and (8),
the test data can be classified based on the predict model.

In the above example, suppose we want to classify the data
u1 = (2, 1, 3, ?). According to Eq. (6), we have

w1 ¼
3

ð3� 3þ 1Þ2
¼ 3; w2 ¼ 0:5; w3 ¼ 1=9:
(1) P(c) can be computed according to Eq. (7). In the above case,

there are three training data and two classes, so n = 3 and
nc = 2. Then, we have



Y. Ma et al. / Information and Software Technology 54 (2012) 248–256 251
Pð‘false’Þ ¼ w1 �1þw2 �1þ1
ðw1þw2þw3Þþnc

¼ 3 �1þ0:5 �1þ1
ð3þ0:5þ1=9Þþ2

¼ 0:804:

Pð‘true’Þ ¼ 0:196:
(2) P(ajjc) can also be computed according to Eq. (8). In the
above case, n1 = 2, n2 = 3, n3 = 3. We can get
Pða1 ¼ 2j‘false’Þ ¼ w1 � 1 � 1þ 1
w1 � 1þ n1

¼ 3 � 1 � 1þ 1
3 � 1þ 2

¼ 0:8:
Similarly we have
Pða2 ¼ 1j ‘false’Þ ¼ 2=3;Pða3 ¼ 3j‘false’Þ ¼ 5=14:
Pða1 ¼ 2j ‘true’Þ ¼ 0:5;Pða2 ¼ 1j‘true’Þ ¼ 1=3;Pða3 ¼ 3j ‘true’Þ ¼ 1=3:
For u1, according to Eq. (1), we have
Pð‘false’ju1Þ ¼
Pð‘false’Þ

Q3
j¼1Pðajj‘false’Þ

Pð‘false’Þ
Q3

j¼1Pðajj‘false’ÞþPð‘true’Þ
Q3

j¼1Pðajj‘true’Þ
¼ 0:933:

Pð‘true’ju1Þ ¼ 0:067:
Table 1
Source data and target data.

Project Examples % Defective Description

Source data (NASA)
pc1 1109 6.94 Flight software
kc1 1212 26.00 Storage management
kc2 522 20.49 Storage management
kc3 458 9.38 Storage management
cm1 498 9.83 Spacecraft instrument
mw1 403 7.69 A zero gravity experiment
mc2 161 32.30 Video guidance system

Target data (SOFTLAB)
ar3 63 12.7 Embedded controller
ar4 107 18.69 Embedded controller
ar5 36 22.22 Embedded controller
Because 0.933 > 0.067, we classify u1 to class ‘false’.

3.2.4. Analysis for TNB
Algorithm 1 presents the pseudo-code of the TNB classifier. Let

n be the number of the training set size, m be the number of the
test set size, and k be the number of the attributes. Minimum
and maximum values of each attribute in the test set must be
found with a runtime of O(km). The theoretical runtime of the
set weight step is O(kn). Next, a weighted Naive Bayes classifica-
tion is also built with a runtime of O(kn). Finally, the test step cost
runtime of O(km). Therefore, the total theoretical runtime of TNB is
O(k(n + m)). As the K nearest neighbors for each test sample must
be searched, the theoretical runtime of NN-filter method is
O(kmn). Since the number of attributes is much smaller than the
number of the test samples, the runtime of TNB is much less than
that of NN-filter method.

Algorithm 1. Transfer Naive Bayes (TNB).

Require
The set of labeled samples, L;
The set of unlabeled samples, U;

Ensure
TNB classifier, M;

1: compute Max, Min of U;
2: compute ri of each instance xi;
3: for each instance xi 2 L do
4: according to Eq. (6), set wi to xi;
5: end for
6: Build weighted Naive Bayes;
7: for each instance ui 2 U do
8: use Eq. (1) to predict ui;
9: end for
10: return M;

This classifier has different advantages, due to the inductive
bias of the specific target set data as well as the distributional dif-
ferences among the source data. In [8], the distances from each test
sample to all training samples are computed. While the K nearest
neighbors of each test sample are used to train the model, the fur-
ther samples are discarded. In our method, we use all the training
data. The discarded samples in NN-filter method also contain use-
ful information. We still use them to build classifier by giving dif-
ferent weights. This strategy enable the learning model be able to
use more information available on the feature level. The experi-
ment results also show a good performance of our method. On
the other hand, we only compute the maximum values and mini-
mum values of the test data, when scanning the test data. And then
we compare these values with training data only once. So, the
time-complexity is a linear function of the number of training data
and test data.
4. Experiments

In this section we evaluate TNB algorithm empirically. We use
Naive Bayes classifier in Weka [35] to conduct the CC method.
And we implement the NN-filter and TNB methods in Weka envi-
ronment. We focus on cross-company defect-prone software mod-
ules prediction problems in this experiment. As we will show later,
TNB significantly improves prediction performance with less time
over the sample selecting method when applied to defect data sets
from different companies.

4.1. Data set

In this study, we use multiple sets of software defect records
from different companies as source data, to predict an unlabeled
defect set, which is regarded as target data from another company.
Since the source data and target data are collected from different
companies, they are under different distributions. All our source
data sets come from NASA data sets, our target data sets come from
Turkish software company (SOFTLAB), both of which can also be
obtained from PROMISE [11], as shown in Table 1. The feature
numbers are not the same in all data sets, so we use all shared fea-
tures in these data sets, as shown in Table 2.

The source data sets are seven subsystems taken from NASA,
and the target data sets are three systems related to the embedded
controller for white-goods from SOFTLAB. Although, these projects
have some relation within the two organizations, these companies
are very different across the two organizations. That is, the projects
from the companies of these different organizations are very differ-
ent. Therefore, using these source data to predict defects on each
target data set is a transferring prediction from cross-company
projects to another.

4.2. Performance measures

To evaluate the performance of the prediction model, we can
use the confusion matrix of the predictor from Weka [35]. In this
matrix,

True positive is: the number of defective modules predicted as
defective;
False negative is: the number of defective modules predicted as
non-defective;



Table 2
All shared features in NASA and SOFTLAB projects.

Type # Feature

Mccabe 2 Cyclomatic complexity; design complexity

Loc 4 Code and comment loc; comment loc
Executable loc; total loc

Halstead 10 Halstead difficulty; halstead effort
Halstead error; halstead length
Halstead time; halstead volume
Unique operands; unique operators
Total operands; total operators

Other 1 Branch count
Total 17

Table 4
Experimental results: AUC, pd, pf, and F �measure comparisons, using all the NASA
data sets as training data and each SOFTLAB data set as test data. The bold results in
last column indicate the performances of TNB significantly outperform NN-filter.

Metric CC NN-filter TNB

ar3
AUC 0.5009 ± 0.0000 0.6511 ± 0.0001 0.7139 ± 0.0002
pd 1.0000 ± 0.0000 0.8750 ± 0.0000 0.8750 ± 0.0000
pf 0.9982 ± 0.0000 0.5727 ± 0.0003 0.4473 ± 0.0007
F-measure 0.2257 ± 0.0000 0.3012 ± 0.0000 0.3540 ± 0.0002

ar4
AUC 0.5264 ± 0.0000 0.6170 ± 0.0000 0.6920 ± 0.0001
pd 1.0000 ± 0.0000 0.8500 ± 0.0000 0.8300 ± 0.0006
pf 0.9471 ± 0.0001 0.6161 ± 0.0001 0.4460 ± 0.0008
F-measure 0.3268 ± 0.0000 0.3753 ± 0.0000 0.4405 ± 0.0001

ar5
AUC 0.5036 ± 0.0001 0.7839 ± 0.0001 0.8268 ± 0.0002
pd 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
pf 0.9929 ± 0.0002 0.4321 ± 0.0004 0.3464 ± 0.0008
F-measure 0.3653 ± 0.0000 0.5696 ± 0.0001 0.6232 ± 0.0004

252 Y. Ma et al. / Information and Software Technology 54 (2012) 248–256
False positive is: the number of non-defective modules pre-
dicted as defective;
True negative is: the number of non-defective modules pre-
dicted as non-defective, as shown in Table 3.

In our study, we use four performance metrics, pd, pf, F �mea-
sure, and AUC, which are commonly used in defect prediction. They
are defined as follows.

Probability of Detection (pd) [5], also called recall and true po-
sitive rate in [36]. It is a measure of completeness, defines the
probabilities of true defective modules in comparison to the total
number of defective modules:

pd ¼ recall ¼ TP
TP þ FN

ð9Þ

Precision, a measure of exactness, defines the probabilities of
true defective modules to the number of modules predicted as
defective:

precision ¼ TP
TP þ FP

ð10Þ

As [37] states ‘‘the F �measure combines recall and precision
with an equal weight’’, F �measure can be defined the as follows:

F �measure ¼ ðaþ 1Þ � recall � precision
recallþ a � precision

ð11Þ

where a 2 (0,+1), is the weight of recall metric. In this research, we
use a = 1. Probability of False alarm (pf) [5], also called false positive
rate. It defines the probabilities of false positive modules in compar-
ison to the total number of non-defective modules,

pf ¼ FP
FP þ TN

ð12Þ

Receiver operating characteristics (ROC) graph depicts the rela-
tive tradeoff between benefit and cost [36]. ROC graph is two-
dimensional graph in which pd is plotted on the Y axis and pf is
plotted on the X axis. In order to compare the performances of
the different prediction models, ROC performances can be reduced
to a single scalar value. The area under the ROC curve (AUC) [36] is
the portion of the area of unit square. In this unit, the diagonal line
between (0,0) and (1,1), which has an area of 0.5. An AUC less than
0.5, it means very low pd and very high pf. We seek a predictor with
high pd and low pf, In other words, the high AUC is the ideal case.
Table 3
Confusion matrix of the predictor.

Classified true Classified false

Real true True positive (TP) False negative (FN)
Real false False positive (FP) True negative (TN)
As accuracy is considered a poor performance measure for
imbalanced defect data sets, we used AUC to estimate the perfor-
mance of each classifier. These metrics have the range, 0 6 pd, pf,
F �measure, AUC 6 1. The models perform better with the higher
values of pd, F �measure, AUC, and the lower pf values.

4.3. Experiment on data sets from very different companies

In order to investigate the performance of our algorithm, we
conduct the experiment on the data sets from very different com-
panies, i.e. NASA aerospace software companies and Turkish
domestic appliances company. Using the projects from these two
organizations as source data and target data, can be actually con-
sidered as cross-company circumstances.

The performance of TNB are compared with that of CC (use all
training data to build prediction model directly) and NN-filter (se-
lect similar training data to build prediction model, in our experi-
ment K = 10 as in [8]).

First, we merge all the NASA data sets as source data. Each tar-
get set from SOFTLAB is used as test data. Note that we only use all
the available common features (i.e. 17 attributes in total, details in
Table 2). Then, we transform the original independent variable val-
ues using log filter. For each method, the processing is repeated 10
times considering that the sampling of subsets introduces random-
ness. Details can be seen from [5,8].

CC: random select 90% source data for training.
NN-filter [8]: For each test data, K nearest neighbors are se-

lected from candidate training set. The total of the similar data is
K � N (N is the number of the test data). And then, unique ones
are used for training a predictor.

TNB: first, random select 90% source data as training data and
then, use the TNB algorithm on these training data.

Note that, the defective ratios of the training data are similar to
those of the original source data in the three methods.

Finally, for comparing the results for these methods, we con-
ducted Mann–Whitney U-Test1 with level of significance: 5%
(P = 0.05). That is, we speak of two results for a data set as being ‘‘sig-
nificantly different’’ only if the difference is statistically significant at
the 0.05 level according to the Mann–Whitney U-Test.

We calculate the means and variances of these 10 times’ results
for the three methods. The pd, pf, AUC and F �measure values are
1 Mann–Whitney U test is a non-parametric statistical hypothesis test to compare
o independent groups of sampled data, which is without an assumption of a

ormal distribution. For details see [38].

tw
n



Table 5
The average running time (in seconds) for 10 times.

Data set CC NN-filter TNB

ar3 0.3250 27.1578 0.3438
ar4 0.3375 59.9438 0.3578
ar5 0.3141 10.8359 0.3296

Y. Ma et al. / Information and Software Technology 54 (2012) 248–256 253
summarized in Table 4. It shows that CC method not only has both
highest pd and pf values (as described in [8]), but also has the low-
est AUC and F �measure values. The high pf values are reduced
dramatically by using NN-filter method in all cases.

On all target sets, TNB achieves higher AUC values than NN-fil-
ter significantly. Similar to the results obtained using the AUC per-
formance metric, TNB outperforms NN-filter with respect to the
F �measure and pf. TNB method only has one lower pd value than
NN-filter, but it is still comparable. Although, our result cannot
achieve the within company model results (pd = 0.75, pf = 0.25 in
[5]), we still consider it a good result. Note that within company
defect prediction is relative simpler than the cross-company defect
prediction, since the training data and test data have the same dis-
tribution in the former situation, but have different distributions in
the latter situation.

The testing time is crucial for large-scale projects with a large
number of test data. All of our experiments are performed on an
IBM PC (2.99 GHz CPU with 1.50 GB RAM). In Table 5, we compare
TNB with other methods in terms of the average total time on the
three data sets. We can see that the computational time cost of
TNB is close to that of the CC method. The runtime cost for NN-fil-
ter is dramatically higher than other comparative algorithms espe-
cially when the size of the data set is larger, i.e. ar4. This is because
that NN-filer iterates across the entire data space repeatedly until
all the distances from test data to training data have been
computed.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

training data rate

AU
C

CC

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

training data rate

pf

NN
TNB

NN
TNB

CC

Fig. 1. Performances c
4.4. Experiment on data sets with different sizes

In order to investigate the effect of the training size on these
methods, we also change the numbers of training samples in the
experiment. In Figs. 1–3, all the four performance results are re-
corded when the training size is gradually increased from 10% to
100%. From these three figures, we can see that TNB always im-
proves the AUC, F �measure and pf performances over CC and
NN-filter. Although the pd values of CC are very high (close to 1.0
on all data sets), it is not a good prediction model. The use of the
CC method is not practical, because CC method also has too high
pf values, which means that this method predicts almost all the
non-defective modules as defective. This performance can also be
seen from the AUC and F �measure curves, which are very low
(i.e. below 0.55, 0.55, 0.65 and 0.22, 0.32, 0.35 on ar3, ar4, ar5,
respectively).

In Fig. 1, we focus on the ar3 data set. For all the training exam-
ple rates, the pd values of TNB method are close to NN-filter meth-
od, as the training data rate gradually increases. This means that
the TNB can use more information of the training data, when more
training samples are used. When the ratios are less than 0.9, TNB
has little lower pd values than NN-filter, but still comparable. What
is more, TNB always has better pf performances than NN-filter.
Considering all the four metrics from Fig. 1, we can conclude that
TNB has better performances than NN-filter on ar3 data set.

From Fig. 2, we can see that the pd values of the TNB are slightly
lower than that of the NN-filter on ar4. But TNB improves the AUC,
F �measure and pf performance dramatically, i.e. the pf values de-
crease from around 0.6 to around 0.4, the AUC values increase from
around 0.6 to around 0.7, and the F �measure values increase from
around 0.36 to around 0.46.

For further studying the performance of the compared methods,
the median performance values on ar5 are depicted in Fig. 3. We
can see that the TNB has pd values close to 1.0 and pf values below
0.4. This means that, although TNB method does not achieve the
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

training data rate

pd

CC

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

training data rate

F−
m

ea
su

re

CC

NN
TNB

NN
TNB

ompared on ar3.



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

training data rate

AU
C

CC

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

training data rate

pf

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.32
0.34
0.36
0.38
0.4

0.42
0.44
0.46
0.48

training data rate

F−
m

ea
su

re

NN
TNB

CC

training data rate

pd

CC
NN
TNB

NN
TNB

CC

CC
NN
TNB

Fig. 2. Performances compared on ar4.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

training data rate

AU
C

CC
NN
TNB

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.975

0.98

0.985

0.99

0.995

1

1.005

training data rate

pd

CC
NN
TNB

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

training data rate

F−
m

ea
su

re

CC
NN
TNB

training data rate

pf

CC
NN
TNB

Fig. 3. Performances compared on ar5.

254 Y. Ma et al. / Information and Software Technology 54 (2012) 248–256
performance within company defect prediction model [5], it still
has a good performance across-company defect prediction. We
are optimistic that this method can provide an alternative tech-
nique guiding the corrective action.
4.5. Experiment on data sets from related companies

The above experiments are conducted on the very different data
sets, i.e. the training sets are from NASA and test sets are from



Table 6
Experimental results: AUC and F �measure comparisons for each NASA data set. The
line w/t/l means that the algorithm at the corresponding TNB wins in w data sets, ties
in t data sets, and loses in l data sets, compared with the algorithm at the
corresponding column.

Data CC NN-filter TNB

AUC
kc1 0.6170 ± 0.0014 0.6130 ± 0.0021 0.6236 ± 0.0017
mc2 0.5745 ± 0.0243 0.6171 ± 0.0118 0.6252 ± 0.0199
kc3 0.7021 ± 0.0321 0.6406 ± 0.0117 0.7377 ± 0.0074
mw1 0.6506 ± 0.0028 0.6349 ± 0.0244 0.6777 ± 0.0114
kc2 0.7612 ± 0.0030 0.7641 ± 0.0023 0.7787 ± 0.0024
pc1 0.6066 ± 0.0082 0.5981 ± 0.0060 0.5796 ± 0.0100
cm1 0.6440 ± 0.0148 0.6071 ± 0.0296 0.6594 ± 0.0117
w/t/l 3/4/0 2/5/0

F-measure
kc1 0.4567 ± 0.0031 0.4286 ± 0.0052 0.4701 ± 0.0030
mc2 0.5053 ± 0.0280 0.4688 ± 0.0264 0.5385 ± 0.0315
kc3 0.2655 ± 0.0155 0.2695 ± 0.0169 0.2579 ± 0.0140
mw1 0.1817 ± 0.0071 0.1987 ± 0.0085 0.1981 ± 0.0056
kc2 0.5097 ± 0.0098 0.5372 ± 0.0053 0.5601 ± 0.0059
pc1 0.1686 ± 0.0030 0.1407 ± 0.0016 0.1427 ± 0.0031
cm1 0.2564 ± 0.0118 0.2242 ± 0.0113 0.2704 ± 0.0127
w/t/l 2/5/0 1/6/0

Y. Ma et al. / Information and Software Technology 54 (2012) 248–256 255
SOFTLAB companies. In this section, further experiment results are
showed on the projects from related companies, i.e. NASA compa-
nies. NASA projects were all developed by contractors under NASA
(mainly for American aerospace software applications), had to fol-
low stringent ISO-9001 industrial practices imposed by NASA [5].
That is, these projects can be considered from the companies in
similar application domain to some extent. In the extensive exper-
iment, each date set from the NASA data sets is used as test data,
and the rest data sets are used as training data.

Table 6 shows the results of the average and standard deviation
of AUC and F �measure values. Each method runs 10 times on the
NASA data sets. And then, we conduct Mann–Whitney test with
significantly different probability of 0.95 to compare our algorithm
with other algorithms. The line w/t/l summarized at the bottom of
the table, means that TNB wins in w data sets, ties in t data sets,
and loses in l data sets, compared with the algorithm at the corre-
sponding column. We summarize the highlights as follows:

TNB outperforms the CC and NN-filter method in the aspect of
AUC. Compared with CC method, TNB wins 3 data sets, ties 4 data
sets, loses 0 data set. And compared with NN-filter method, TNB
wins 2 data sets, ties 5 data sets, loses 0 data set.

TNB outperforms the CC and NN-filter method in the aspect of
F �measure. Compared with CC method, TNB wins 2 data sets, ties
5 data sets, loses 0 data sets. And compared with NN-filter method,
TNB wins 1 data set, ties 6 data sets, loses 0 data set.

In terms of the average AUC and F �measure, TNB is the best
among the three methods compared. From Tables 4 and 6, we
can see that the TNB achieves bigger improvements on SOFTLAB
data sets than on NASA data sets. These different improvements
may be caused by a variety of reasons, such as the scale of the pro-
ject, similarity of the data sets, standard of the projects and so on.
The experiments show that TNB can get better performances on
the very different data sets from different companies. When there
are too few same-distribution training data to train good classifi-
ers, the useful knowledge from different-distribution training data
on feature level may help.
5. Threats to validity

As every empirical experiment, our results are subject to some
threats to validity.
5.1. Construct validity

First of all, we covered only a small number of data sets from
specific sources, namely, NASA MDP and SOFTLAB. We cannot
necessarily generalize to other data sets from the current study,
since the attributes of these data sets may not be the same. Sec-
ond, there are some potential issues about the defects can be
raised, for example, whether the defects are incompletely fixed,
whether the defects are recorded. Since we know that a large
number of researchers used the open data sets studied here, we
consider that the defects were revealed and fixed adequately in
our study.
5.2. Internal validity

Many structural measures have been found to be strongly cor-
related with other measures, and their additional benefits in char-
acterizing defect-prone modules have been questioned. In our
method, we suppose the feature is independent with each other,
and has the same importance to building the defect model. The
traditional Naive Bayes classifier also assumes the effect of an
attribute value on a given class is independent of the values of
other attributes, but still has good performance in with-in com-
pany defect prediction. Therefore, the internal validity threat
caused by this attribute correlation should be minor. A second is-
sue affecting internal validity is that developers’ skills and exper-
tise training could affect defect proneness. Similarly to the earlier
studies mentioned above, such data were not available in this
study.
5.3. External validity

In this study, we validated our findings on open data sets with
different characteristics, from two different organizations, i.e.
NASA and SOFTLAB. By doing so, we have gained more confidence
in the external validity of the results. However, one could still think
more about the ability of application of our method in industrial
practice, due to the differences in different systems developed for
different domains with different complexity. Surely, the replicated
studies examining our method on other software systems will be
useful to generalize our findings and improve our method.
5.4. Statistical validity

The Mann–Whitney U test, is non parametric test. It does not
rest on any assumption concerning the underlying distributions.
We do not known whether the performances appear any distribu-
tions, so we use Mann–Whitney U test in our study. Furthermore,
Mann–Whitney U test is frequently used in many data mining arti-
cles. To the best of our knowledge, there is little current negative
criticism for Mann Whitney U test as a statistical test for data min-
ers, but many for others.

The domain of the systems and development teams of the
projects in our study will be different to that of many other
companies. Thus it might be possible that our results do not
generalize to the projects from other companies. Although, it is
may be misunderstood as a criticism of empirical studies, this
study shows encouraged results with transfer learning method.
Our method should encourage more researchers to run similar
studies, deepen the understanding of the field, and develop more
practical predict models. Cross-company prediction research has
a lot of serious challenges. Our study would be replicated with
more projects, different metrics, and replaced by more
sophisticated method.



256 Y. Ma et al. / Information and Software Technology 54 (2012) 248–256
6. Conclusion and future work

In this paper, we addressed the issue of how to predict software
defects using cross-company data. In our setting, the labeled train-
ing data are available but have a different distribution from the
unlabeled test data. We have developed a sample weighting algo-
rithm based on Naive Bayes, called Transfer Naive Bayes.

The TNB algorithm applies the weighted Naive Bayes model by
transferring information from the target data to the source data.
First, it calculates the each attribute information of the target data.
Then, the degree of similarity for each sample in the source data is
computed by comparing with the information collected in the first
step. After giving each training instance a weight, based on the
similarity, this method build the TNB model on the weighted train-
ing instances. Experiments are conducted to show that TNB can
give good performances among the comparative methods on the
test data sets. Moreover, TNB also shows excellent runtime cost
property. We are optimistic that this method can guide optimal re-
source allocation strategies, which may reduce software testing
cost and increase effectiveness of software testing process.

There are several areas in which we can improve this work.
First, when we try to transfer the target data information, we only
use simple information of the target data, i.e. the max and min val-
ues of each attribute. However, such information can not reflect
the precise characters of target data, how to get more information
of the target data should be well studied in our following work.
Second, in the future we will try to investigating other transfer
algorithms for cross-company software defect prediction on more
software defect data sets.

Acknowledgements

This research was partially supported by National High Tech-
nology Research and Development Program of China (No.
2007AA01Z443), Research Fund for the Doctoral Program of Higher
Education (No. 20070614008), and the Fundamental Research
Funds for the Central Universities (No. ZYGX2009J066). We thank
the anonymous reviewers for their great helpful comments.

References

[1] L. Briand, V. Basili, C. Hetmanski, Developing interpretable models with
optimized set reduction for identifying high risk software components, IEEE
Transactions on Software Engineering 19 (11) (1993) 1028–1044.

[2] T.M. Khoshgoftaar, E.B. Allen, J.P. Hudepohl, S.J. Aud, Application of neural
networks to software quality modeling of a very large telecommunications
system, IEEE Transactions on Neural Networks 8 (4) (1997) 902–909.

[3] N. Fenton, M. Neil, P. Hearty, W. Marsh, D. Marquez, P. Krause, R. Mishra,
Predicting software defects in varying development lifecycles using Bayesian
nets, Information and Software Technology 49 (1) (2007) 32–43.

[4] S. Kanmani, V. Rhymend Uthariaraj, V. Sankaranarayanan, P. Thambidurai,
Object-oriented software fault prediction using neural networks, Information
and Software Technology 49 (5) (2007) 483–492.

[5] T. Menzies, J. Greenwald, A. Frank, Data mining static code attributes to learn
defect predictors, IEEE Transactions on Software Engineering 33 (11) (2007)
2–13.

[6] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, Y. Jiang, Implications of ceiling
effects in defect predictors, in: Proceedings of the 4th International Workshop
on Predictor Models in Software Engineering, 2008, pp. 47–54.

[7] C. Catal, B. Diri, Investigating the effect of dataset size, metrics sets, and feature
selection techniques on software fault prediction problem, Information
Sciences 179 (8) (2009) 1040–1058.

[8] B. Turhan, T. Menzies, A.B. Bener, J.D. Stefano, On the relative value of cross-
company and within-company data for defect prediction, Empirical Software
Engineering 14 (5) (2009) 540–578.

[9] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, Cross-project defect prediction:
a large scale experiment on data vs. domain vs. process, in: Proceedings of the
7th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/
FSE), 2009, pp. 91–100.

[10] S.J. Pan, Q. Yang, A survey on transfer learning, Technical Report HKUST-CS 08-
08, Department of Computer Science and Engineering, Hong Kong University
of Science and Technology, 2008.

[11] G. Boetticher, T. Menzies, T. Ostrand, The PROMISE Repository of Empirical
Software Engineering Data, 2007 <http://promisedata.org/repository>.

[12] Y. Shi, Z. Lan, W. Liu, W. Bi, Extending semi-supervised learning methods for
inductive transfer learning, In: Ninth IEEE International Conference on Data
Mining, 2009, pp. 483–492.

[13] J. Huang, A. Smola, A. Gretton, K.M. Borgwardt, B. Scholkopf, Correcting sample
selection bias by unlabeled data, in: Proceedings of the 19th Annual
Conference on Neural Information Processing Systems, 2007, pp. 601–608.

[14] S. Bickel, M. Bruckner, T. Scheffer, Discriminative learning for differing training
and test distributions, in: Proceedings of the 24th International Conference on
Machine Learning, 2007, pp. 81–88.

[15] M. Sugiyama, S. Nakajima, H. Kashima, P.V. Buenau, M. Kawanabe, Direct
importance estimation with model selection and its application to covariate
shift adaptation, in: Proceedings of the 20th Annual Conference on Neural
Information Processing Systems, 2008, pp. 1433–1440.

[16] T. Kamishima, M. Hamasaki, S. Akaho, TrBagg:A Simple Transfer Learning
Method and Its Application to Personalization in Collaborative Tagging, in:
Proceedings of the IEEE International Conference on Data Mining (ICDM),
2009, pp. 219–228.

[17] W. Dai, G. Xue, Q. Yang, Y. Yu, Transferring naive bayes classifiers for text
classification, in: Proceedings of the 22rd AAAI Conference on Artificial
Intelligence, 2007, pp. 540–545.

[18] W. Dai, Q. Yang, G. Xue, Y. Yu, Boosting for transfer learning, in: Proceedings of
the 24th International Conference on Machine Learning, 2007, pp. 193–200.

[19] P. Wu, T.G. Dietterich, Improving svm accuracy by training on auxiliary data
sources, in: Proceedings of the 21st International Conference on Machine
Learning, 2004, pp. 871–878.

[20] A. Arnold, R. Nallapati, W.W. Cohen, A comparative study of methods for
transductive transfer learning, in: Proceedings of the IEEE International
Conference on Data Mining (ICDM), 2007, pp. 77–82.

[21] X. Ling, G.-R. Xue, W. Dai, Y. Jiang, Q. Yang, Y. Yu, Can Chinese web pages be
classified with english data source? in: Proceedings of the 17th International
Conference on World Wide Web, 2008, pp. 969–978.

[22] J. Blitzer, R. McDonald, F. Pereira, Domain adaptation with structural
correspondence learning, in: Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2006, pp. 120–128.

[23] X. Zhang, W. Dai, G. Xue, Y. Yu, Adaptive Email Spam Filtering based on
Information Theory, in: Proceedings of the Eighth International Conference on
Web Information Systems Engineering (WISE), 2007, pp. 59–170.

[24] A.R. Gray, S.G. MacDonnell, A Comparison of techniques for developing
predictive models of software metrics, Information and Software Technology
39 (6) (1997) 425–437.

[25] V.K. Vaishnavi, S. Purao, J. Liegle, Object-oriented product metrics: a generic-
framework, Information Sciences 177 (2) (2007) 587–606.

[26] J. Al Dallal, L. Briand, An Object-Oriented High-Level Design-Based Class
Cohesion Metric, TR, Simula Research Laboratory, 2009.

[27] Y. Liu, T.M. Khoshgoftaar, N. Seliya, Evolutionary optimization of software
quality modeling with multiple repositories, IEEE Transactions on Software
Engineering 36 (6) (2010) 852–864.

[28] R. Duda, P. Hart, N. Nilsson, Subjective bayesian methods for rule-based
inference systems, Technical Report 124, Artificial Intelligence Center, SRI
International, 1976.

[29] L. Peng, B. Yang, Y. Chen, A. Abraham, Data gravitation based classification,
Information Sciences 179 (6) (2009) 809–819.

[30] C. Wang, Y.Q. Chen, Improving nearest neighbor classification with simulated
gravitational collapse, Advances in Natural Computation, Lecture Motes in
Computer Science 3612 (2005) 845–854.

[31] M. Indulska, M.E. Orlowska, Gravity based spatial clustering, in: Proceedings of
the 10th ACM International Symposium on Advances in Geographic
Information Systems, 2002, pp. 125–130.

[32] I. Newton, Philosophiae Naturalis Principia Mathematica, first ed., Royal
Society, London, 1687.

[33] E. Frank, M. Hall, B. Pfahringer, Locally Weighted Naive Bayes, in: Proceedings
of the Conference on Uncertainty in Artificial Intelligence, 2003, pp. 249–256.

[34] U.M. Fayyad, K.B. Irani, Multi-interval discretization of continuous-valued
attributes for classification learning, In: Proceedings of the Thirteenth
International Joint Conference on Articial Intelligence, 1993, pp. 1022–1027.

[35] I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques, second ed., Morgan Kaufman, San Francisco, 2005.

[36] T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters 27 (8)
(2006) 861–874.

[37] C.J. van Rijsbergen, Information Retireval, second ed., Butterworth, London,
1979.

[38] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics Bulletin
1 (6) (1945) 80–83.

http://promisedata.org/repository

	Transfer learning for cross-company software defect prediction
	1 Introduction
	2 Related work
	2.1 Transfer learning techniques
	2.2 Software defect prediction

	3 Transfer learning for software defect prediction
	3.1 Naive Bayes software defect prediction model
	3.2 Transfer Naive Bayes
	3.2.1 Collecting target set information
	3.2.2 Data gravitation
	3.2.3 Weighting for training data
	3.2.4 Analysis for TNB


	4 Experiments
	4.1 Data set
	4.2 Performance measures
	4.3 Experiment on data sets from very different companies
	4.4 Experiment on data sets with different sizes
	4.5 Experiment on data sets from related companies

	5 Threats to validity
	5.1 Construct validity
	5.2 Internal validity
	5.3 External validity
	5.4 Statistical validity

	6 Conclusion and future work
	Acknowledgements
	References


